早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 6 与是数域F上的不可约多项式 相关的结果,耗时94 ms
f(x)是首项系数为1的n次整系数多项式,a1..an是n个两两不同的整数,且f(ai)=-1求证f(x)在有理数域上不可约
数学
设a是一复数,且是数域F上非零多项式g(x)的根,令W={f(x)∈F[x]|f(a)=0}证明在W存在多项式p(x),使得对任一f(x)∈W,都有p(x)|f(x),且p(x)不可约
其他
f(x)是域F上的首一不可约多项式,域的特征CharF=0,设E是包含F的代数封闭域,由于f(x)在域F上不可约,因此f(x)在F[X]中没有重因式.请说明一下为什么说由于域F的特征为0,因此f(x)在E[X]中也没有重因
数学
件不是很理解
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)|f(x)或(p(x),f(x))=1.证明:p(x)
是数域F上的不可约多项式
.
数学
设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G(X)整除F(X
数学
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)|f(x)或(p(x),f(x))=1.证明:p(x)
是数域F上的不可约多项式
.
其他
1
>
热门搜索: