早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 7 与设A是一个N阶实对称矩阵 相关的结果,耗时44 ms
设A,B是两个n阶实对称矩阵,且A-B是正定的,K(A)表示A的所有k阶主子式的和,问是否有K(A)>K(B)?如果再加一个条件:A,B的所有i阶主子式的和大于0,i=1,2,...,k.结论会怎样呢?
数学
关于A=0的证明设A是n阶实对称矩阵,且A²=0证明A=0.其中一种证明方法是这样的:由A(T)A=A²=0,那么对任一个n维列向量α,有α(T)A(T)Aα=0,即(Aα)(T)(Aα)=0,亦即‖Aα‖=0.可见Aα是
数学
次方程组Ax=0解,因而Ax
设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量,a3=(1,0,-1)^t是另一个特征值的特征向量,求A^n
数学
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
数学
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
其他
设A是一个N阶实对称矩阵
,如果对任意N维向量X,都有TXAX=0,则有A=0
数学
大学矩阵设λ1,λ2是n阶实对称矩阵A的两个不同特征值,α是A的对应于特征值λ1的一个单位特征向量.试求矩阵B=A-λ1ααT的两个特征值.
其他
1
>
热门搜索: