早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5已知a+b+c=1,求证:(a/(1+b+c))+(b/(1+a+c))+(c/(1+a+b))≥3/5实际上是这样的

题目详情
已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5
已知a+b+c=1,求证:(a/(1+b+c))+(b/(1+a+c))+(c/(1+a+b))≥3/5
实际上是这样的
▼优质解答
答案和解析
好像题目中应加上a、b、c为正实数.
可以利用柯西不等式来证明
a/(1+b+c)+b(/1+a+c)+c/(1+a+b)=a/(2-a)+b/(2-b)+c/(2-c)=-3+2[1/(2-a)+1/(2-b)+1/(2-c)]
[(2-a)+(2-b)+(2-c)][1/(2-a)+1/(2-b)+1/(2-c)]≥[√(2-a)·1/(2-a)+√(2-b)·1/(2-b)+√(2-c)·1/(2-c)]²=9
(2-a)+(2-b)+(2-c)=5
所以1/(2-a)+1/(2-b)+1/(2-c)≥18/5
a/(1+b+c)+b(/1+a+c)+c/(1+a+b)≥-3+2×9/5=3/5.