早教吧作业答案频道 -->数学-->
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an
题目详情
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列
(2)Sn+1=4an
(2)Sn+1=4an
▼优质解答
答案和解析
证明:
(1)
注意到:
a(n+1)=S(n+1)-S(n)
代入已知第二条式子得:
S(n+1)-S(n)=S(n)*(n+2)/n
nS(n+1)-nS(n)=S(n)*(n+2)
nS(n+1)=S(n)*(2n+2)
S(n+1)/(n+1)=S(n)/n*2
又S(1)/1=a(1)/1=1不等于0
所以{S(n)/n}是等比数列
(2)
由(1)知,
{S(n)/n}是以1为首项,2为公比的等比数列.
所以S(n)/n=1*2^(n-1)=2^(n-1)
即S(n)=n*2^(n-1) (*)
代入a(n+1)=S(n)*(n+2)/n得
a(n+1)=(n+2)*2^(n-1) (n属于N)
即a(n)=(n+1)*2^(n-2) (n属于N且n>1)
又当n=1时上式也成立
所以a(n)=(n+1)*2^(n-2) (n属于N)
由(*)式得:
S(n+1)=(n+1)*2^n
=(n+1)*2^(n-2)*2^2
=(n+1)*2^(n-2)*4
对比以上两式可知:S(n+1)=4*a(n)
(1)
注意到:
a(n+1)=S(n+1)-S(n)
代入已知第二条式子得:
S(n+1)-S(n)=S(n)*(n+2)/n
nS(n+1)-nS(n)=S(n)*(n+2)
nS(n+1)=S(n)*(2n+2)
S(n+1)/(n+1)=S(n)/n*2
又S(1)/1=a(1)/1=1不等于0
所以{S(n)/n}是等比数列
(2)
由(1)知,
{S(n)/n}是以1为首项,2为公比的等比数列.
所以S(n)/n=1*2^(n-1)=2^(n-1)
即S(n)=n*2^(n-1) (*)
代入a(n+1)=S(n)*(n+2)/n得
a(n+1)=(n+2)*2^(n-1) (n属于N)
即a(n)=(n+1)*2^(n-2) (n属于N且n>1)
又当n=1时上式也成立
所以a(n)=(n+1)*2^(n-2) (n属于N)
由(*)式得:
S(n+1)=(n+1)*2^n
=(n+1)*2^(n-2)*2^2
=(n+1)*2^(n-2)*4
对比以上两式可知:S(n+1)=4*a(n)
看了 数列{an}的前n项和记为S...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
///////证明 3^n-2^m=(2^k-3^n)a (n m k为自然数 a为大于的整数 n 2020-05-16 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
关于函数导数的问题1、求函数f(x)=x^n(n属于正自然数)在x=a处的导数.f'(a)=(x^ 2020-07-21 …
设n为常数,且为正整数,函数Y=X^2-X+1/4的自变量X在,n≤X<n+1范围内取值时,函数Y 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
小李准备将1,2,...,n这n个数输入电脑,并计算其平均数,当他认为输入完毕时,电脑显示只输入了( 2020-11-27 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
数列概念问题数列a(n+1)-a(n)=常数这个数列是指a(n)是以这个常数为公差的等差数列还是是指 2020-12-26 …