早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直线l与曲线y=lnx相切,且平行与直线2x-y+6=0,求l的方程

题目详情
直线l与曲线y=lnx相切,且平行与直线2x-y+6=0,求l的方程
▼优质解答
答案和解析
因为L平行于已知直线,则它们具有相同的斜率,不妨设所求直线方程为:2x-y+C=0;
切点设为(x,2x+C),代入曲线2x+C=lnx;又该点到已知直线的距离为最小d=(2x-lnx+C)/根号下5,要使得该距离取得最小,则有(d对x的求导为零)2-1/X=0,x=1/2,y=lnx=-ln2,C=-ln2-1,所以所求方程为:2x-y-(1+ln2)=0