早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形ABCD的对角线AC、BD相交于点O,BE平分∠OBA,CF⊥BE于点F,交OB于点G.求证:OE=OG.

题目详情
如图,正方形ABCD的对角线AC、BD相交于点O,BE平分∠OBA,CF⊥BE于点F,交OB于点G.求证:OE=OG.
▼优质解答
答案和解析
证明:∵正方形ABCD的对角线AC、BD相交于点O,
∴OB⊥OC,BO=CO,
∴∠EOB=∠COG=90°.
∵CF⊥BE于点F,
∴∠CFE=∠CFB=90°.
∴∠EBO+∠BEO=90°,∠BEC+∠ECF=90°,
∴∠EBO=∠ECF.
在△BEO和△CGO中,
∠EBO=∠GCO
∠EOB=∠GOC
OB=OC

∴△BEO≌△CGO(AAS),
∴OE=OG.