早教吧作业答案频道 -->数学-->
已知二次函数y=x2-(m2+8)x+2(m2+6),设抛物线顶点为A,与x轴交于B、C两点,问是否存在实数m,使△ABC为等腰直角三角形?如果存在求m;若不存在说明理由.
题目详情
已知二次函数y=x2-(m2+8)x+2(m2+6),设抛物线顶点为A,与x轴交于B、C两点,问是否存在实数m,使△ABC为等腰直角三角形?如果存在求m;若不存在说明理由.
▼优质解答
答案和解析
若△ABC是等腰直角三角形,则∠BAC=90°,
设B、C两点的坐标分别为(x1,0)、(x2,0),x1<x2,则x1、x2是方程x2-(m2+8)x+2(m2+6)=0的两个根,
∴x1+x2=m2+8,x1•x2=2(m2+6),
∴x1>0,x2>0,
∴BC=x2-x1,
∵(x1-x2)2=(x1+x2)2-4x1x2=(m2+8)2-8(m2+6),
=(m2+4)2,
∴BC=m2+4,
∵由抛物线的顶点坐标可知,A点的纵坐标为,
=2(m2+6)-
,
∴AD=
-2(m2+6),
∵△ABC是等腰直角三角形,
∴BC=2AD,
∴m2+4=
-4(m2+6),
解得m2=-2<0,m2=-4<0,都无意义.
故答案为:不存在实数m,使△ABC为等腰直角三角形.
设B、C两点的坐标分别为(x1,0)、(x2,0),x1<x2,则x1、x2是方程x2-(m2+8)x+2(m2+6)=0的两个根,
∴x1+x2=m2+8,x1•x2=2(m2+6),
∴x1>0,x2>0,
∴BC=x2-x1,
∵(x1-x2)2=(x1+x2)2-4x1x2=(m2+8)2-8(m2+6),
=(m2+4)2,
∴BC=m2+4,
∵由抛物线的顶点坐标可知,A点的纵坐标为,
8(m2+6)−(m2+8)2 |
4 |
(m2+8)2 |
4 |
∴AD=
(m2+8)2 |
4 |
∵△ABC是等腰直角三角形,
∴BC=2AD,
∴m2+4=
(m2+8)2 |
2 |
解得m2=-2<0,m2=-4<0,都无意义.
故答案为:不存在实数m,使△ABC为等腰直角三角形.
看了 已知二次函数y=x2-(m2...的网友还看了以下:
已知角α的终边为射线OP①若点P的坐标为(sin150°,cos150°),求tanα②若OP在直 2020-04-27 …
已知函数f(x)=a㏑x+x2(a为实常数)(1)若a=-2,求证:函数f(x)在(1,+∽)上是 2020-05-13 …
是否存在正整数m,使(a+b)的4m-1次方能被(a+b)2m+7次方整除?若存在,求m的值,若不 2020-05-15 …
在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;( 2020-05-16 …
1.是否存在连续四个正整数,他们均为合数?若存在,求出其中一组最小的值;若不存在,说明理由.2.1 2020-06-27 …
已知x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.1.是否存在实数k,使(2x 2020-07-11 …
已知函数fx=x/lnx+ax,x>1⑴若fx在(1,+∞)上单调递减,求实数a的取值范围⑵若已知 2020-07-12 …
在直角坐标系中,已知A(a,0),B(0,b)(1)若a,b满足|2b+3a-17|+(b-a-1 2020-07-30 …
.已知点A(5,0),B(-4,0).1.在y轴上是否存在点C,使S△ABC的面积为18?若存在, 2020-07-31 …
二.已知点A(5,0),B(-4,0).1.在y轴上是否存在点C求点C,使S△ABC的面积为18? 2020-07-31 …