早教吧作业答案频道 -->数学-->
高中文数三角形面积、不等式问题.1.在△ABC中,AB=4√3,AC=2√3,AD为BC边上的中线,且∠BAD=30°,则△的面积是?2.若直线ax+by+1=0(a>0,b>0)将圆x²+y²+2x+2y=0恰好平分,则2/a+1/b的最小值为?
题目详情
高中文数三角形面积、不等式问题.
1.在△ABC中,AB=4√3,AC=2√3,AD为BC边上的中线,且∠BAD=30°,则△的面积是?
2.若直线ax+by+1=0(a>0,b>0)将圆x²+y²+2x+2y=0恰好平分,则2/a+1/b的最小值为?
1.在△ABC中,AB=4√3,AC=2√3,AD为BC边上的中线,且∠BAD=30°,则△的面积是?
2.若直线ax+by+1=0(a>0,b>0)将圆x²+y²+2x+2y=0恰好平分,则2/a+1/b的最小值为?
▼优质解答
答案和解析
1.在△ABC中,AB=4√3,AC=2√3,AD为BC边上的中线,且∠BAD=30°,则△的面积是?
D是 BC边上的中点,所以 S△ABD = S△ACD ,即
AB×AD×sin30°/2 = AC×AD×sin∠CAD / 2
代入数值可得:sin∠CAD = 1 ===> ∠CAD = 90°===> ∠A = 120°
S△ABC = AB×AC×sin120°/ 2 = 6√3
补充:
辅助线做法对于△有中线也不错:方法两种:向外构造全等△-------楼上都是
从D向AB中点连线构造中位线,
2.若直线ax+by+1=0(a>0,b>0)将圆x²+y²+2x+2y=0恰好平分,则2/a+1/b的最小值为?
直线将圆恰好平分,直线必定经过圆心,即圆心在直线上.
圆 x² + y² + 2x + 2y = 0 ===> (x+1)² + (y+1)² = 2 ===> 圆心为 (-1,-1),半径√2
所以 a*(-1) + b*(-1) + 1 = 0 ===> a + b = 1
设 a = cos²α b = sin²α
则 2/a + 1/b = 2sec²α + csc²α = 2 + 1 + 2tan²α + 1/tan²α ≥3 + 2√(2 * 1) = 3 + 2√2
答案:2/a+1/b 的最小值为 3+2√2
补充:基本不等式属于柯西不等式的特例,但往往用三角函数更容易理解些
更一般地:M/a + N/b = Msec²α + Ncsc²α = M + N + Mtan²α + N/tan²α.
≥ M + N + 2√(M * N)
D是 BC边上的中点,所以 S△ABD = S△ACD ,即
AB×AD×sin30°/2 = AC×AD×sin∠CAD / 2
代入数值可得:sin∠CAD = 1 ===> ∠CAD = 90°===> ∠A = 120°
S△ABC = AB×AC×sin120°/ 2 = 6√3
补充:
辅助线做法对于△有中线也不错:方法两种:向外构造全等△-------楼上都是
从D向AB中点连线构造中位线,
2.若直线ax+by+1=0(a>0,b>0)将圆x²+y²+2x+2y=0恰好平分,则2/a+1/b的最小值为?
直线将圆恰好平分,直线必定经过圆心,即圆心在直线上.
圆 x² + y² + 2x + 2y = 0 ===> (x+1)² + (y+1)² = 2 ===> 圆心为 (-1,-1),半径√2
所以 a*(-1) + b*(-1) + 1 = 0 ===> a + b = 1
设 a = cos²α b = sin²α
则 2/a + 1/b = 2sec²α + csc²α = 2 + 1 + 2tan²α + 1/tan²α ≥3 + 2√(2 * 1) = 3 + 2√2
答案:2/a+1/b 的最小值为 3+2√2
补充:基本不等式属于柯西不等式的特例,但往往用三角函数更容易理解些
更一般地:M/a + N/b = Msec²α + Ncsc²α = M + N + Mtan²α + N/tan²α.
≥ M + N + 2√(M * N)
看了 高中文数三角形面积、不等式问...的网友还看了以下:
已知椭圆C过点M(2,1),两个焦点分别为(-6,0),(6,0),O为坐标原点,平行于OM的直线 2020-05-15 …
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上 2020-06-03 …
有一种用来画圆的工具板,工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为 2020-06-11 …
一个球里挖去一个最大的正方体它的8个顶点都在球的表面一个平面去截球截面形状不可能是A一个圆内有一个 2020-07-11 …
“www.sushao.com”的数学题(五年级)1.一个正方形,内有一个最大的圆,圆不超过正方形 2020-07-15 …
关于最小包围圆问题我还想请教一下:1.主函数的两个参数有什么用?2.程序中距离圆心最远的点程序中好 2020-07-26 …
5.不同经纬线上两点最短距离:过两点的大圆不是经线圈,而是以地心为圆心,与经线圈斜交的大圆,两点最 2020-07-29 …
阅读材料:我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆.例如:线段AB的最小覆盖圆就 2020-08-02 …
圆的标准方程已知圆C:(x-3)^2+(y-4)^2=4及两点A(-1,0),B(1,0),P(x 2020-08-02 …