早教吧作业答案频道 -->数学-->
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的
题目详情
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
▼优质解答
答案和解析
(1)如图3,
∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
∵△DOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴OD=OC=OB=OA,∠1=∠2=60°,
∴∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴∠4=30°.
同理∠6=30°.
∵∠AEB=∠4+∠6,
∴∠AEB=60°.
(2)如图4
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
看了 (1)如图1,点O是线段AD...的网友还看了以下:
A.渚清(zhǔ)凋伤(diāo)霜鬓(bìn)B.暮砧(zhān)千载(zài)塞上(sài)C 2020-05-13 …
(好的加分!)有一个弹簧振子模型的位移问题如图所示O为平衡位置,C和B为振动时的最大位移处COB为 2020-06-05 …
如图,AB是⊙O的切线,B为切点,BC是⊙O的弦,直线AC与⊙O交于D,角C=45°,DE⊥AB, 2020-07-11 …
△ABC与△A'B'C'是位似图形,点A.B.A'.B'.O共线,点o为位似中心若AB=2A'B' 2020-07-21 …
关于圆的相交相切相离的简单题在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m 2020-07-26 …
九下习题3.7怎么写在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m,⊙O的 2020-07-31 …
下列各组词语中,加线字读音有误的一项是A.疾病(jí)狼藉(jí)间断(jiàn)夹竹桃(jiā) 2020-08-01 …
大气臭氧层的反应是:O+O3=2O2△H,该反应的能量变化如图所示,下列叙述中,正确的是()A.O+ 2020-10-31 …
下列词语中加点字的读音全对的一项是()。A.褒(bǎo)义汲(jí)黯恬(tiān)退隐忍宫阙(qu 2020-12-26 …
若F1,F2分别是椭圆X^2/3-Y^2/b^2(b>0)的两个焦点,A和B是以O为圆心,以若F1, 2020-12-31 …