早教吧作业答案频道 -->数学-->
复习中遗忘的太多求好心人支助~已知椭圆x^2/24+y^2/16=1,直线l:x/12+y/8=1,P是l上的一点,射线OP交椭圆于R,又点Q在OP上,且满足|OQ|·|OP|=|OR^2,当点P在l上移动时,求点Q的轨迹方程.
题目详情
复习中遗忘的太多求好心人支助~
已知椭圆x^2/24+y^2/16=1,直线l:x/12+y/8=1,P是l上的一点,射线OP交椭圆于R,又点Q在OP上,且满足|OQ|·|OP|=|OR^2,当点P在l上移动时,求点Q的轨迹方程.
已知椭圆x^2/24+y^2/16=1,直线l:x/12+y/8=1,P是l上的一点,射线OP交椭圆于R,又点Q在OP上,且满足|OQ|·|OP|=|OR^2,当点P在l上移动时,求点Q的轨迹方程.
▼优质解答
答案和解析
令Q(a,b)
OP:y=b/ax
联立x^2/24+y^2/16=1
y=b/ax
得x=(48a^2/(2a^2+3b^2))^1/2
y=(48b^2/(2a^2+3b^2))^1/2
联立x/12+y/8=1
y=b/ax
得x=24a/(2a+3b)
y=24b/(2a+3b)
又因为|OQ|·|OP|=|OR|^2
得(a^2+b^2)^1/2*[(24a/(2a+3b))^2+(24b/(2a+3b))^2]^1/2=48a^2/(2a^2+3b^2)+48b^2/(2a^2+3b^2)
解得2(a-1)^2+3(b-1)^2=5
OP:y=b/ax
联立x^2/24+y^2/16=1
y=b/ax
得x=(48a^2/(2a^2+3b^2))^1/2
y=(48b^2/(2a^2+3b^2))^1/2
联立x/12+y/8=1
y=b/ax
得x=24a/(2a+3b)
y=24b/(2a+3b)
又因为|OQ|·|OP|=|OR|^2
得(a^2+b^2)^1/2*[(24a/(2a+3b))^2+(24b/(2a+3b))^2]^1/2=48a^2/(2a^2+3b^2)+48b^2/(2a^2+3b^2)
解得2(a-1)^2+3(b-1)^2=5
看了 复习中遗忘的太多求好心人支助...的网友还看了以下:
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重 2020-04-27 …
在xy平面,直线L过原点O,和点A,A不等于O.取一点P,过P点做L的垂线和L相交于Q点,如果P点 2020-05-16 …
如图,数轴上点A,B,D对应点的数分别是-400.200-800,动点P,Q分别从点D,O同时出发 2020-06-12 …
如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐 2020-06-14 …
直线MN上有P'、O、P、Q四点,质点A、B在某时刻分别位于P点和Q点,并具有相同的速直线MN上有 2020-07-09 …
一点电荷Q=-5×10-4C置于匀强电场中的O点,以O为圆心在竖直平面内画一半径为R=10cm的圆 2020-07-13 …
⊙O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有三点P、Q、R,若PD=4 2020-07-26 …
真空中带+Q的两个点电荷相距为2l,中点为O,将带电量为q的正电荷由O点沿中垂线向无穷远处移动则则 2020-08-01 …
如图所示,重物B被绕过小滑轮P的细线所悬挂,重物A放在粗糙的水平桌面上;小滑轮P被一根斜短线系于天花 2020-12-05 …
电荷q均匀分布在半球面ACB上,球面的半径为R,CD为通过半球顶点C与球心O的轴线,如图.P、Q为C 2021-01-09 …