早教吧 育儿知识 作业答案 考试题库 百科 知识分享

考察下列一组不等式:23+53>22×5+2×5224+54>23×5+2×53252+552>22×512+212×52…,将上述不等式在左右两端视为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式

题目详情
23+53>22×5+2×52
24+54>23×5+2×53
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
,将上述不等式在左右两端视为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为______.
23+53>22×5+2×52
24+54>23×5+2×53
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
23+53>22×5+2×52
24+54>23×5+2×53
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
23+53>22×5+2×52
24+54>23×5+2×53
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
23+53>22×5+2×52
24+54>23×5+2×53
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
23+53>22×5+2×5223+53>22×5+2×5223+53>22×5+2×5223+53>22×5+2×523+53>22×5+2×5253>22×5+2×5253>22×5+2×523>22×5+2×5222×5+2×5222×5+2×522×5+2×525252224+54>23×5+2×5324+54>23×5+2×5324+54>23×5+2×5324+54>23×5+2×534+54>23×5+2×5354>23×5+2×5354>23×5+2×534>23×5+2×5323×5+2×5323×5+2×533×5+2×53535332
5
2
+5
5
2
25
1
2
+2
1
2
×52
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
2
5
2
+5
5
2
25
1
2
+2
1
2
×52
5
2
+5
5
2
25
1
2
+2
1
2
×52
5
2
55225
5
2
25
1
2
+2
1
2
×52
5
5
2
25
1
2
+2
1
2
×52
5
2
25
1
2
+2
1
2
×52
5
2
552225
1
2
+2
1
2
×52
25
1
2
+2
1
2
×52
5
1
2
+2
1
2
×52
5
1
2
+2
1
2
×52
5
1
2
+2
1
2
×52
1
2
+2
1
2
×52
1
2
11222
1
2
×52
2
1
2
×52
1
2
×52
1
2
112252522……
▼优质解答
答案和解析
由不等式:23+53>22×5+2×5224+54>23×5+2×53252+552>22×512+212×52…我们分析不等号两端式子结构的特点,及指数之间的关系不难推断:am+n+bm+n>ambn+anbm(a,b,m,n>0,且a≠b)故选Am+n+bm+n>ambn+anb...
看了 考察下列一组不等式:23+5...的网友还看了以下: