早教吧 育儿知识 作业答案 考试题库 百科 知识分享

y=x^3+3x^2-1(利用导数)求极大极小值是多少?

题目详情
y=x^3+3x^2-1(利用导数)求极大极小值是多少?
▼优质解答
答案和解析
y=x^3+3x^2-1
(1)y'=3x^2+6x
(2)令y'=3x^2+6x=3x(x+2)=0,得驻点x1=0,x2=-2
(3)
当x在0的左侧邻近时,3x0,所以y'=3x^2+6x=3x(x+2)0,x+2>0,所以y'=3x^2+6x=3x(x+2)>0
由定理
[设函数f(x)在点x0的一个邻域内可导且f'(x0)=0.
1.如果当x取x0的左侧邻近的值时,f'(x)恒为正;当x取x0的右侧邻近的值时,f'(x)恒为负,那么函数f(x)在x0处取得极大值
2.如果当x取x0的左侧邻近的值时,f'(x)恒为负;当x取x0的右侧邻近的值时,f'(x)恒为正,那么函数f(x)在x0处取得极小值
3.如果当x取x0的左右两侧邻近的值时,f'(x)恒为正或负,那么函数f(x)在x0处无极值]
得:y=x^3+3x^2-1在x=0处取得极小值-1
(4)当x在-2的左侧邻近时,3x