早教吧作业答案频道 -->数学-->
求导数f(x)=8/(x^2+4)f(x)=8/(x^2+4)求f'(x)和f''(X)
题目详情
求导数f(x)=8/(x^2+4)
f(x)=8/(x^2+4)
求f '(x)和f ''(X)
f(x)=8/(x^2+4)
求f '(x)和f ''(X)
▼优质解答
答案和解析
f'(x)=8(x^2+4)^(-1)
=-8(x^2+4)^(-2)(2x)
=-16x/(x^2+4)^2
f"(x)=-16*[(x^2+4)^2-2(x^2+4)(2x)]/(x^2+4)^4
=-16(x^2+4-4x)/(x^2+4)^3
=-16(x-2)^2/(x^2+4)^3
=-8(x^2+4)^(-2)(2x)
=-16x/(x^2+4)^2
f"(x)=-16*[(x^2+4)^2-2(x^2+4)(2x)]/(x^2+4)^4
=-16(x^2+4-4x)/(x^2+4)^3
=-16(x-2)^2/(x^2+4)^3
看了 求导数f(x)=8/(x^2...的网友还看了以下: