早教吧作业答案频道 -->数学-->
必有重谢(重点在第二问)已知函数f(x)=x^2+lnx-ax(a∈R)(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
题目详情
必有重谢(重点在第二问)
已知函数f(x)=x^2+lnx-ax(a∈R)
(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围
(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
已知函数f(x)=x^2+lnx-ax(a∈R)
(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围
(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
▼优质解答
答案和解析
(1)f(x)=x²+lnx-ax(a∈R)
f'(x)=2x+1/x-a
f(x)在(0,1)上增函数,说明在(0,1)上,f'(x)≥0
2x+1/x≥2√2,等号在x=√2/2时取得
所以2x+1/x-a≥0
a≤2x+1/x的最小值
a≤√2/2
a的取值范围是(-∞,√2/2]
(2)x∈[0,ln3]
t=e^x
t∈[1,3]
因为a≤√2/2<1
所以|e^x-a|=e^x-a
g(x)=e^2x+e^x-a
g'(x)=2e^2x+e^x>0
g(x)在定义域上是增函数
g(x)min=g(0)=1+1-a=2-a
函数g(x)的最小值是2-a
f'(x)=2x+1/x-a
f(x)在(0,1)上增函数,说明在(0,1)上,f'(x)≥0
2x+1/x≥2√2,等号在x=√2/2时取得
所以2x+1/x-a≥0
a≤2x+1/x的最小值
a≤√2/2
a的取值范围是(-∞,√2/2]
(2)x∈[0,ln3]
t=e^x
t∈[1,3]
因为a≤√2/2<1
所以|e^x-a|=e^x-a
g(x)=e^2x+e^x-a
g'(x)=2e^2x+e^x>0
g(x)在定义域上是增函数
g(x)min=g(0)=1+1-a=2-a
函数g(x)的最小值是2-a
看了 必有重谢(重点在第二问)已知...的网友还看了以下:
高数问题十分紧急设函数f(x)在(a,b)上可导连续,f(a)=0,a>0求证存在在ξ在高数问题十 2020-05-14 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
2道高一的复合函数题目1.已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1, 2020-05-22 …
导数的连续性设f(x)可导,且f(0)=0,f(x)在0点的导数不为0,求w=lim(x→0){x 2020-07-16 …
若函数f(x),x属于R,则对于任意的x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1 2020-08-01 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
设函数f(x)={2^xx>0,x+1x小于等于0.若f(a)+f(1)=0,则实数a的值等于?1设 2020-12-08 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
一道函数题.若f(x)为R奇函数且在(0.+无穷大)内是增函数,又f(3)=0,则x*f(x)小于0 2020-12-08 …
设函数f(x,y)在区域D:0≤x≤1,0≤y≤1上有定义,f(0,0)=0,且在(0,0)处f(x 2021-02-05 …