早教吧作业答案频道 -->数学-->
必有重谢(重点在第二问)已知函数f(x)=x^2+lnx-ax(a∈R)(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
题目详情
必有重谢(重点在第二问)
已知函数f(x)=x^2+lnx-ax(a∈R)
(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围
(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
已知函数f(x)=x^2+lnx-ax(a∈R)
(1)若函数f(x)在(0,1)上增函数,求实数a的取值范围
(2)在(1)的结论下,设g(x)=e^2x+|e^x-a|,x∈[0,ln3],求函数g(x)的最小值
▼优质解答
答案和解析
(1)f(x)=x²+lnx-ax(a∈R)
f'(x)=2x+1/x-a
f(x)在(0,1)上增函数,说明在(0,1)上,f'(x)≥0
2x+1/x≥2√2,等号在x=√2/2时取得
所以2x+1/x-a≥0
a≤2x+1/x的最小值
a≤√2/2
a的取值范围是(-∞,√2/2]
(2)x∈[0,ln3]
t=e^x
t∈[1,3]
因为a≤√2/2<1
所以|e^x-a|=e^x-a
g(x)=e^2x+e^x-a
g'(x)=2e^2x+e^x>0
g(x)在定义域上是增函数
g(x)min=g(0)=1+1-a=2-a
函数g(x)的最小值是2-a
f'(x)=2x+1/x-a
f(x)在(0,1)上增函数,说明在(0,1)上,f'(x)≥0
2x+1/x≥2√2,等号在x=√2/2时取得
所以2x+1/x-a≥0
a≤2x+1/x的最小值
a≤√2/2
a的取值范围是(-∞,√2/2]
(2)x∈[0,ln3]
t=e^x
t∈[1,3]
因为a≤√2/2<1
所以|e^x-a|=e^x-a
g(x)=e^2x+e^x-a
g'(x)=2e^2x+e^x>0
g(x)在定义域上是增函数
g(x)min=g(0)=1+1-a=2-a
函数g(x)的最小值是2-a
看了 必有重谢(重点在第二问)已知...的网友还看了以下:
1.若x的1/2次方+x的-1/2次方=3求(x的3/2次方+x的-3/2次方-3)/(x的2次方 2020-05-04 …
f(x)=1/2(x-1)^2+a的定义域和值域都是[1,b](b>1),求a,b的值已知a>0, 2020-05-17 …
已知函数f(x)=x³-ax²-3x,(1)若f(x)在区间[1,正无穷)上是增函数,求a已知函数 2020-07-18 …
几条初二的数学题1.已知一次函数y=(4-2m)x+3-m.(1)若y随x的值增大而增大,求m的取 2020-07-19 …
若fx=(m-1)x^2+2mx+3为减函数,则fx在区间(-5,-2)上是a增函数b减函数c不确 2020-07-25 …
已知函数f(x)=a-[1/(2的x次方)-1],(a属于R)1.若f(x)为奇函数,求a的值;2 2020-07-27 …
1.若f(x)是定义在(0,+∝)上的增函数且对一切x〉0,y〉0满足f(x/y)=f(x)-f( 2020-08-03 …
三、解答题(本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分 2020-12-13 …
已知某厂今天第一月的产值为300万元,设每月产值的月平均增长率为x,求(1)写出第三个月的产值y与月 2020-12-31 …
已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,(1)求函数的定义域;(2)若函数f 2021-01-31 …