早教吧作业答案频道 -->数学-->
设f(x)在(0,1)上连续,在(0,1)内可导,且f(0)=f(1),证明存在0
题目详情
设f(x)在(0,1)上连续,在(0,1)内可导,且f(0)=f(1),证明存在0
▼优质解答
答案和解析
证明:
分别在[0,1/2],[1/2,1]上对f(x)运用微分中值定理
存在ξ∈(0,1/2),使得
f(1/2)-f(0)=1/2f'(ξ).(1)
存在η∈(1/2,1),使得
f(1)-f(1/2)=1/2f'(η).(2)
(1),(2)相加可得
f‘(η)+f’(ξ)=0
即证.
分别在[0,1/2],[1/2,1]上对f(x)运用微分中值定理
存在ξ∈(0,1/2),使得
f(1/2)-f(0)=1/2f'(ξ).(1)
存在η∈(1/2,1),使得
f(1)-f(1/2)=1/2f'(η).(2)
(1),(2)相加可得
f‘(η)+f’(ξ)=0
即证.
看了 设f(x)在(0,1)上连续...的网友还看了以下:
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf′(x)=f(x)+ 2020-06-23 …
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成 2020-07-04 …
数学,设f(x)在[1,3]连续,在(1,3)可导,且f(3)=0,证明至少存一点a∈(1,3), 2020-07-16 …
设函数f(x)在[1,e]上连续,且在[1,e]内有0 2020-07-20 …
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连 2020-07-31 …
高等数学问题设f(x)在[-1,1]上连续且在(-1,1)内有连续二阶导数.证明:设f(x)在[- 2020-07-31 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
设f'(x)在[0,1]上连续,试求∫[1+xf'(x)]e^f'(x)dx(范围是0到1)抱歉,输 2020-10-31 …
设f(x)在点x=0处连续,若lim(1+f(x)/x)^(1/sinx)=e^2(x趋近于0),则 2020-11-11 …