早教吧作业答案频道 -->数学-->
f(x)=x-a/x-(a+1)lnx,a属于r.一,当a
题目详情
f(x)=x-a/x-(a+1)lnx,a属于r.
一,当a<1时,求f(x)的单调区间二,若f(x)在【1,e】上的最小值为-2,求a
一,当a<1时,求f(x)的单调区间二,若f(x)在【1,e】上的最小值为-2,求a
▼优质解答
答案和解析
1.对f(x)求导,得f(x)的导数为1+a/x²-(a+1)/x,令导数为0,得(x-1)(x-a)=0,解得x=1或x=a
又因为a<1,在x1时,f(x)的导数都大于0,在a<=x<=1时,f(x)的导数小于0
则f(x)的单调递增区间是(-∞,a]和[1,∞),单调递减区间是(a,1)
2.由第一问可知,f(x)的导数等于0时,x=1或a
当a<1时,在[1,e]上递增,x=1取得最小值,f(1)=1-a=-2,a=3不满足a<1舍去
当a>1时,分为两种情况:
①1②a>e,f(x)在(1,e)递减,f(e)最小,值为-2,解得a=e,舍去
综上,a的值为e
又因为a<1,在x1时,f(x)的导数都大于0,在a<=x<=1时,f(x)的导数小于0
则f(x)的单调递增区间是(-∞,a]和[1,∞),单调递减区间是(a,1)
2.由第一问可知,f(x)的导数等于0时,x=1或a
当a<1时,在[1,e]上递增,x=1取得最小值,f(1)=1-a=-2,a=3不满足a<1舍去
当a>1时,分为两种情况:
①1②a>e,f(x)在(1,e)递减,f(e)最小,值为-2,解得a=e,舍去
综上,a的值为e
看了 f(x)=x-a/x-(a+...的网友还看了以下:
两函数对称问题y=g(x)与y=f(x)的图像关于点(a,0)对称,则g(a+x)=-f(a-x) 2020-05-02 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
函数对称性问题f(a+x)=f(a-x)是说明这个函数f(x)关于直线x=a对称,而函数y=f(a 2020-08-01 …
抽象函数f(a-x)+f(x+b)=2c,求对称中心.f(a-x)+f(x+b)=2cf(x+b) 2020-08-02 …
若一个函数关于x=a对称,则有f(x)=f(2a-x).如何得来若函数y=f(x)的图象关于直线x= 2020-11-08 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
关于f(1-x)=f(1+x)为描述函数图像关于x=1对称的推导是f(a-x)=f(a+x)这个,可 2020-12-28 …