早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知sin²α+sin²β=1,且α、β是锐角,则cosαcosβ的最大值为()

题目详情
已知sin²α+sin²β=1,且α、β是锐角,则cosαcosβ的最大值为( )
▼优质解答
答案和解析
由于sin²α+sin²β=1,cos²α+cos²β=(1-sin²α)+(1-sin²β)=2-(sin²α+sin²β)=2-1=1.
α、β是锐角,cosα,cosβ>0.
cosαcosβ<=(1/2)(cos²α+cos²β)=1/2
当且仅当α=β时取等号(cosαcosβ的最大值).
于是cosα=cosβ=(根号2)/2时(α=β=45度),cosαcosβ取最大值,最大值是1/2.