早教吧作业答案频道 -->数学-->
在三角形ABC中,已知2sin^2(A)=3sin^2(B)+3sin^2(C),cos(2A)+3cosA+3cos(B-C)=1,求A、B、C
题目详情
在三角形ABC中,已知2sin^2(A)=3sin^2(B)+3sin^2(C),cos(2A)+3cosA+3cos(B-C)=1,求A、B、C
▼优质解答
答案和解析
把公式cos(2A) = 1 -- 2sin²A
代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:
1 -- 2sin²A + 3cosA + 3cos(B-C) = 1
∴ 2sin²A = 3cosA + 3cos(B-C)
而已知2sin²A = 3sin²B + 3sin²C
由以上两式的右边相等得:
3sin²B + 3sin²C = 3cosA + 3cosBcosC + 3sinBsinC
∴3(sinB -- sinC)² = 3cosA+3cos(B+C) = 3cosA -- 3cosA = 0
∴(sinB -- sinC)² = 0
∴sinB = sinC
∴ B = C
把B = C 代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:
cos(2A)+3cosA + 3 = 1 而cos(2A) = 2cos²A -- 1
∴ (2cos²A -- 1)+ 3cosA + 3 = 1
∴2cos²A + 3cosA + 1 = 0
∴ (cosA + 1)( 2cosA + 1)= 0
∴ cosA = -- 1 或 cosA = -- 1/2
∴ A = π (舍去)或 A = 2π/3 = 120°
而 B = C
∴ B = C = π/6 = 30°
∴ A = 2π/3 = 120° B = C = π/6 = 30°
祝您学习顺利!
代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:
1 -- 2sin²A + 3cosA + 3cos(B-C) = 1
∴ 2sin²A = 3cosA + 3cos(B-C)
而已知2sin²A = 3sin²B + 3sin²C
由以上两式的右边相等得:
3sin²B + 3sin²C = 3cosA + 3cosBcosC + 3sinBsinC
∴3(sinB -- sinC)² = 3cosA+3cos(B+C) = 3cosA -- 3cosA = 0
∴(sinB -- sinC)² = 0
∴sinB = sinC
∴ B = C
把B = C 代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:
cos(2A)+3cosA + 3 = 1 而cos(2A) = 2cos²A -- 1
∴ (2cos²A -- 1)+ 3cosA + 3 = 1
∴2cos²A + 3cosA + 1 = 0
∴ (cosA + 1)( 2cosA + 1)= 0
∴ cosA = -- 1 或 cosA = -- 1/2
∴ A = π (舍去)或 A = 2π/3 = 120°
而 B = C
∴ B = C = π/6 = 30°
∴ A = 2π/3 = 120° B = C = π/6 = 30°
祝您学习顺利!
看了 在三角形ABC中,已知2si...的网友还看了以下:
在梯形面积公式s=1/2(a+b)h中已知s=30,a=6,h=4,求b已知s=60,b=4,h= 2020-05-13 …
初一数学,一元一次方程在梯形面积公式S=1/2(a+b)h中,(1)已知S=30,a=6,h=4, 2020-05-13 …
1已知公式S=1/2(a+b)h中,已知S=30,a=6,h=6,求b=.第二题小明在做解方程作业 2020-06-06 …
仿照正弦定理的证法一,证明S△ABC=1/2absinC,并运用这一结论解决下面的问题(1)在△A 2020-06-22 …
已知函数f(x)=(x/a-1)+(b/x-1)的定义域为[a,b](0<a<b),若x1∈[1, 2020-07-18 …
1.已知集合S={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7},求:1.(A在 2020-07-30 …
已知i是虚数单位,z=√3+i/1-√3i则z的共扼复数是已知s已知i是虚数单位,z=√3+i/1 2020-07-30 …
一元一次方程填空和应用T!填空:1、在梯形面积公式S=1/2(a+b)h中.已知S、a、h,则b= 2020-07-31 …
四元一次方程组等式变换.在计算机数字图像水印处理中用到的四元一次方程组.已知常数R、G、B、S;未 2020-08-03 …
已知直线l:y=k(x+2根号2)与圆x方+y方=4相交于A、B,O是原点.三角形ABO的面积为S已 2020-11-03 …