早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高中数列求通项公式,若数列{An}的前n项和为Sn,且满足Sn=1/2(An+1/An)则数列的通项公式为A.An=nB.An=√nC.An=√n-√(n-1)D.An=(n+1)/2Sn=1/2[An+(1/An)]

题目详情
高中数列求通项公式,
若数列{An}的前n项和为Sn,且满足Sn=1/2(An+1/An)则数列的通项公式为
A.An=n
B.An=√n
C.An=√n-√(n-1)
D.An=(n+1)/2
Sn=1/2[An+(1/An)]
▼优质解答
答案和解析
三个方法,楼主任选一个吧:
法一:由于是选择题,计算一下A1,A2,A3,即可得到答案
下面的两个方法针对需要过程的证明题:
一:通过计算前几项猜想出通项公式,
再用数学归纳法证明
二:将An=Sn-S(n-1)代入,得:
2Sn=Sn-S(n-1)+1/(Sn-S(n-1))
即Sn+S(n-1)=1/(Sn-S(n-1)),分母乘过去
所以Sn^2-(S(n-1))^2=1
构造"Sn^2"为等差数列
则:Sn^2=S(1)^2+(n-1)*1
且:原式中令n=1,可解得:S1=A1=1
所以Sn^2=n,Sn=根号n
所以An=Sn-S(n-1)=√n-√(n-1)