早教吧作业答案频道 -->数学-->
已知;X³-X-1=0,那么X³-2X+1=
题目详情
已知;X³-X-1=0,那么X³-2X+1=
▼优质解答
答案和解析
x^3-2x+1=x^3-x+1-x=-x+2
x^3-x-1=0
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式.归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和.归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B.方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
A=-(1/2)-(1/4-1/27)^(1/2)=-(1/2)-(23/108)^(1/2)
B=-(1/2)+(23/108)^(1/2)
x=A^(1/3)+B^(1/3)
x^3-2x+1
=-A^(1/3)-B^(1/3)+2
x^3-x-1=0
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式.归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和.归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B.方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
A=-(1/2)-(1/4-1/27)^(1/2)=-(1/2)-(23/108)^(1/2)
B=-(1/2)+(23/108)^(1/2)
x=A^(1/3)+B^(1/3)
x^3-2x+1
=-A^(1/3)-B^(1/3)+2
看了 已知;X³-X-1=...的网友还看了以下:
高中毕业好多年了,东西忘了差不多,但现在有忽然必须用到,① 假设P=(x+1)(x+2)(x+4) 2020-05-16 …
xy=(x+3)(y-4);xy=(x-2)(y+4)-4;x=?y=?运算过程怎么算?xy=(x 2020-06-12 …
在三角形ABC中,如果AB=8,AC=10,BC=x,那么x的取值范围是()A.在三角形ABC中, 2020-07-09 …
如图所示,在平行六面体ABCD-A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y 2020-07-12 …
已知函数.其中.(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距 2020-07-21 …
.设集合P={x|x=n,n∈N*},Q={x|x=,n∈N*},R={x|x=n-,n∈N*}, 2020-07-30 …
设A.B是非空集合,定义A×B={X|X∈A∪B,且X不属于A∩B}.已知A={y|y=√3+2设 2020-08-01 …
设集合A={x|x的平方-3x-4大于0},B={x|x的平方-2x+b小于等于0}A交B={x| 2020-08-02 …
p{font-size:10.5pt;line-height:150%;margin:0;paddi 2020-11-15 …
关于功率的公式P=Fvcosα,以下理解正确的是()A.它是由功率的定义式P=W/t及功的定义式W= 2021-01-13 …