早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知α,β为锐角,且sin(α十2β)=2sinα,求角α的最大值,并求此时tg(α+β)的值.

题目详情
已知α,β为锐角,且sin(α十2β)=2sinα,求角α的最大值,并求此时tg(α+β)的值.
▼优质解答
答案和解析
sin[(α十β)+β]=2sin[(α十β)-β]
sin(α十β)cosβ+cos(α十β)sinβ=2[sin(α十β)cosβ-cos(α十β)sinβ]
sin(α十β)cosβ=3cos(α十β)sinβ
tan(α十β)=3tanβ
tanα=tan[(α十β)-β]
=[tan(α十β)-tanβ]/[(1+tan(α十β)*tanβ]
=2tanβ/[1+3(tanβ)^2]
令t=tanβ∈R+,则
tanα=2t/(1+3t^2)=2/(1/t+3t)≤2/(2*√3)=√3/3,
所以,α最大值为 π/6,
此时 β=π/6,
所以 tan(α+β)=√3.