早教吧 育儿知识 作业答案 考试题库 百科 知识分享

圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则PE•PF的最小值是()A.6B.569C.7D.659

题目详情
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则
PE
PF
的最小值是(  )

A.6
B.
56
9

C.7
D.
65
9
2222
PE
PF
的最小值是(  )

A.6
B.
56
9

C.7
D.
65
9
PE
PEPE
PF
PFPF


56
9

C.7
D.
65
9
56
9
565699

65
9
65
9
656599
▼优质解答
答案和解析
(x-2)22+y22=4的圆心C(2,0),半径等于2,圆M  (x-2-5sinθ)22+(y-5cosθ)22=1,
圆心M(2+5sinθ,5cosθ),半径等于1.∵|CM|=
(5sinθ)2+(5cosθ)2
=5>2+1,故两圆相离.
PE
PF
=|
PE
|•
|PF|
•cos∠EPF,要使 
PE
PF
 最小,需|
PE
| 和 
|PF|
 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
(5sinθ)2+(5cosθ)2
(5sinθ)2+(5cosθ)2
(5sinθ)2+(5cosθ)2(5sinθ)2+(5cosθ)22+(5cosθ)22=5>2+1,故两圆相离.
PE
PF
=|
PE
|•
|PF|
•cos∠EPF,要使 
PE
PF
 最小,需|
PE
| 和 
|PF|
 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
PE
PEPEPE•
PF
PFPFPF=|
PE
|•
|PF|
•cos∠EPF,要使 
PE
PF
 最小,需|
PE
| 和 
|PF|
 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
|
PE
PEPEPE|•
|PF|
|PF||PF||PF|•cos∠EPF,要使 
PE
PF
 最小,需|
PE
| 和 
|PF|
 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
PE
PEPEPE•
PF
PFPFPF 最小,需|
PE
| 和 
|PF|
 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
|
PE
PEPEPE| 和 
|PF|
|PF||PF||PF| 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
PE
PF
的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
PE
PEPEPE•
PF
PFPFPF的最小值是
HE
HF

|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
HE
HEHEHE•
HF
HFHFHF.
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2
=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
|HM|2−|ME|2
|HM|2−|ME|2
|HM|2−|ME|2|HM|2−|ME|22−|ME|22=
9−1
=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
9−1
9−1
9−19−1=2
2
,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
2
2
22,sin∠MHE=
|ME|
|MH|
=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
|ME|
|MH|
|ME||ME||ME||MH||MH||MH|=
1
3

∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
1
3
111333,
∴cos∠EHF=cos2∠MHE=1-2sin22∠MHE=
7
9

HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
7
9
777999,
HE
HF
=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
HE
HEHEHE•
HF
HFHFHF=|H E|•|H E|•cos∠EHF=2
2
×2
2
×
7
9
=
56
9
,故选 B.
2
2
22×2
2
×
7
9
=
56
9
,故选 B.
2
2
22×
7
9
=
56
9
,故选 B.
7
9
777999=
56
9
,故选 B.
56
9
565656999,故选 B.