早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求旋转体的体积和表面积(急!)一个等腰直角三角形的边长为2,以斜边为轴旋转,求这个旋转体的表面积和体积

题目详情
求旋转体的体积和表面积(急!)
一个等腰直角三角形的边长为2,以斜边为轴旋转,求这个旋转体的表面积和体积
▼优质解答
答案和解析
好办
等腰直角三角形,以斜边为轴旋转一周,会形成一个枣核装的物体,想象一下,就象一个菱形,绕最长那根对角线选装出的物体一样.
可以把它看做是两个圆锥体的叠加.先求出一个圆锥的表面积和体积,圆锥的表面积是由底面园面积和周身的那个展开扇形的面积构成.
那扇形表面积为S=1/2LR L为底面园周长,R为展开扇形的半径 所以S=2∏
单个体积V=1/3sh S为底面面积,h为椎体的高,边长为2,所以圆锥高为 根号2
所以V=1/3*2∏*根号2=2√2*∏*1/3
所以整个物体的体积为单个椎体的2倍,表面积为那两个扇形的面积
所以V总=4√2*∏*1/3 S总=4∏
算式输入的不太方便,仔细看一下吧,计算方法是没问题的,结果你参考一下.
问题的关键就是把那物体拆分成两个圆锥.