早教吧作业答案频道 -->数学-->
设x,y均大于0,且x+y=1,证明不等式(x+1/x)平方+(y+1/y)平方>=25/2,
题目详情
设x,y均大于0,且x+y=1,证明不等式(x+1/x)平方+(y+1/y)平方>=25/2,
▼优质解答
答案和解析
因为x + y = 1,所以 2根号(xy) = 1/(1/4)^2 = 16 ----------- (2)
原式左边=
x^2 + 2 + 1/x^2 + y^2 + 2 + 1/y^2
= x^2 + y^2 + (x^2 + y^2)/(xy)^2 + 4
根据(1),(2)可得
>= 1/2 + 16/2 + 4 = 25/2
即(x+1/x)^2 + (y+1/y)^2 >= 25/2
原式左边=
x^2 + 2 + 1/x^2 + y^2 + 2 + 1/y^2
= x^2 + y^2 + (x^2 + y^2)/(xy)^2 + 4
根据(1),(2)可得
>= 1/2 + 16/2 + 4 = 25/2
即(x+1/x)^2 + (y+1/y)^2 >= 25/2
看了 设x,y均大于0,且x+y=...的网友还看了以下:
1.已知x>0,y>0,证明(x的平方+y的平方)的二分之一次方>(x的三次方+y的三次方)的三分 2020-05-23 …
1若a,b,x,y属于正数,证明:x分之a平方+y分之b平方大于等于(x+y)分之(a+b)的平方 2020-06-02 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
一道奇怪的数学证明题:设定义在R上的连续函数f(x)满足f'(x)=f(x)且有f(0)=0,证一 2020-06-22 …
1已知函数f(x)对任意x,y∈R总有f(x)+(y)=f(x+y)且当x〉0时,f(x)〈0,f( 2020-12-03 …
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于 2020-12-07 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …
求救!想了几晚就是证明不出来X(t)为宽平稳过程!如果随机过程X(t)的所有二阶矩都存在,并且E[X 2020-12-20 …
想问道..可爱到缺德的题~1---X的平方+2X-M+1=0没有实根,求证方程X的平方+MX=1-2 2021-01-09 …