早教吧作业答案频道 -->数学-->
2/2,4/(2*2),6/(2*2*2),……,2n/(2的n次方)的前n项和
题目详情
2/2,4/(2*2),6/(2*2*2),……,2n/(2的n次方)的前n项和
▼优质解答
答案和解析
2/2,4/(2*2),6/(2*2*2),……,2n/(2的n次方)的前n项和
通项公式为n/2的n-1次方
求和方法是错位相减法,即
令S=2/2+4/(2*2)+6/(2*2*2)+……+2n/(2的n次方)
=1+2/2+3/2²+4/2³+……+n/2的n-1次方-------------------------------------------------(1)
S/2=1/2+2/2²+3/2³+……+n/2的n-1次方+n/(2的n次方)------------------------------(2)
(1)-(2),得S/2=1+1/2+1/2²+1/2³+……+1/(2的n-1次方)-n/(2的n次方)
=[1-(1/2)^n]/[1-(1/2)]-n/(2的n次方)
=[2-2×(1/2)^n]-n/(2的n次方),于是
S=[4-4×(1/2)^n]-2×n/(2^n)=4-(2n+4)/2^n,
通项公式为n/2的n-1次方
求和方法是错位相减法,即
令S=2/2+4/(2*2)+6/(2*2*2)+……+2n/(2的n次方)
=1+2/2+3/2²+4/2³+……+n/2的n-1次方-------------------------------------------------(1)
S/2=1/2+2/2²+3/2³+……+n/2的n-1次方+n/(2的n次方)------------------------------(2)
(1)-(2),得S/2=1+1/2+1/2²+1/2³+……+1/(2的n-1次方)-n/(2的n次方)
=[1-(1/2)^n]/[1-(1/2)]-n/(2的n次方)
=[2-2×(1/2)^n]-n/(2的n次方),于是
S=[4-4×(1/2)^n]-2×n/(2^n)=4-(2n+4)/2^n,
看了 2/2,4/(2*2),6/...的网友还看了以下: