早教吧作业答案频道 -->数学-->
如图,已知:AC=BC,AC⊥BC,AE⊥CF,BF⊥CF,C、E、F分别为垂足,且∠BCF=∠ABF,CF交AB于D.(1)判断△BCF≌△CAE,并说明理由.(2)判断△ADC是不是等腰三角形?并说明理由.
题目详情
如图,已知:AC=BC,AC⊥BC,AE⊥CF,BF⊥CF,C、E、F分别为垂足,且∠BCF=∠ABF,CF交AB于D.
(1)判断△BCF≌△CAE,并说明理由.
(2)判断△ADC是不是等腰三角形?并说明理由.
(1)判断△BCF≌△CAE,并说明理由.
(2)判断△ADC是不是等腰三角形?并说明理由.
▼优质解答
答案和解析
(1)△BCF≌△CAE.
理由如下:∵AC⊥BC,AE⊥CF,
∴∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,
∴∠CAE=∠BCF,
∵AE⊥CF,BF⊥CF,
∴∠AEC=∠F=90°,
在△BCF和△CAE中,
∵
,
∴△BCF≌△CAE(AAS);
(2)△ADC是等腰三角形.
理由如下:∵AC⊥BC,BF⊥CF,
∴∠ACB=∠F=90°,
∴∠ACD+∠BCF=90°,∠BDF+∠ABF=90°,
∵∠BCF=∠ABF,
∴∠ACD=∠BDF,
又∵∠BDF=∠ADC(对顶角相等),
∴∠ACD=∠ADC,
∴AC=AD,
故△ADC是等腰三角形.
理由如下:∵AC⊥BC,AE⊥CF,
∴∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,
∴∠CAE=∠BCF,
∵AE⊥CF,BF⊥CF,
∴∠AEC=∠F=90°,
在△BCF和△CAE中,
∵
|
∴△BCF≌△CAE(AAS);
(2)△ADC是等腰三角形.
理由如下:∵AC⊥BC,BF⊥CF,
∴∠ACB=∠F=90°,
∴∠ACD+∠BCF=90°,∠BDF+∠ABF=90°,
∵∠BCF=∠ABF,
∴∠ACD=∠BDF,
又∵∠BDF=∠ADC(对顶角相等),
∴∠ACD=∠ADC,
∴AC=AD,
故△ADC是等腰三角形.
看了 如图,已知:AC=BC,AC...的网友还看了以下:
设映射f:x——y,A属于X,B属于X,证明:f(A并B)=f(A)并f(B) 2020-05-16 …
已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a) 2020-05-17 …
设映射f:X->Y,A是X的子集,B也是X的子集,证明:(1)f(A并B)=f(A)并f(B)(2 2020-06-14 …
已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a) 2020-07-14 …
数学映射问题设映射f:X-Y,A属于X,B属于X,证明:(1)f(A并B)=f(A)并f(B)(2 2020-07-30 …
判断以下对应是否为从集合A到B的映射,并说明理由.(1)A={平面内的圆},B={平面内的三角形} 2020-07-30 …
如何理解函数f:A→B,是(f:A),(B)两个整体.还是看成(f),(A→B)两个整体.并说明理由 2020-11-15 …
已知函数f(x)=cos(x-2派/3)-mcosx+3/2是奇函数.求函数fx的最小周期以及对轴三 2020-11-20 …
已知函数f(x)=ex,(x∈R).(1)求f(x)在点(1,e)处的切线方程;(2)证明:曲线y= 2020-11-28 …
有人设计了一种测温装置,其结构如图所示.玻璃泡A内封有一定量体,与管A相连的B管插在水银槽中,管内水 2020-12-08 …