早教吧作业答案频道 -->数学-->
已知函数f(x)=-x3+3x2+9x+a.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
题目详情
已知函数f(x)=-x3+3x2+9x+a.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
▼优质解答
答案和解析
(I)f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
看了 已知函数f(x)=-x3+3...的网友还看了以下:
什么是双曲函数,它在数学、物理上各有哪些应用(或者说说,它是怎么被发现的) 2020-04-26 …
设函数f(x)是周期为2Pai的周期函数,它在[0,2pai)上的表达式为f(x)=x^2S(x) 2020-06-06 …
有没有一种初等函数它在R上每点都不可导?那非初等函数呢? 2020-06-08 …
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-x 2020-06-18 …
设f(x)是周期为2π的周期函数,它在[-π,π)上的表达式为f(x)=2x,求f(x)的傅里叶级 2020-07-13 …
(1/2)1、设f〔x〕是以2兀为周期的函数,它在[-兀,兀]上表达式为f(x)={-1〔—兀<= 2020-07-13 …
1.设logx1/8=3/2,则x为?2.已知f(x)是偶函数,它在[0,+∝)上是减函数,若f( 2020-07-22 …
高数题函数已知f(x)是周期为5的连续函数,它在x=0的某个邻域满足f(1+sinx)-3f(1- 2020-07-31 …
神马叫错位相减,它在(由递推公式求通项)中怎么用可不可以举个通俗的例子 2020-08-01 …
1.已知f(x)是偶函数,它在[0,+无穷大)上是减函数,若f(lgx)大于f(1)则x的取值范围是 2020-12-08 …