早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=-x3+3x2+9x+a.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

题目详情
已知函数f(x)=-x3+3x2+9x+a.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
▼优质解答
答案和解析
(I)f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.