早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值.

题目详情
如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值______.
▼优质解答
答案和解析

解法一、过D作DE∥AC交BC延长线于E,
∵AD∥BC,DE∥AC,
∴四边形ACED是平行四边形,
∴AD=CE,
∴根据等底等高的三角形面积相等得出△ABD的面积等于△DCE的面积,
即梯形ABCD的面积等于△BDE的面积,
∵AC⊥BD,DE∥AC,
∴∠BDE=90°,BE=3+7=10,
∴此时△BDE的边BE边上的高越大,它的面积就越大,
即当高是
1
2
BE时最大,
即梯形的最大面积是
1
2
×10×
1
2
×10=25;

解法二、过O作ON⊥AD于N,
设ON=h,AO=a,DO=ka,
∵∠DAO=∠DAO,∠ANO=∠AOD=90°,
∴△ANO∽△AOD,
ON
AO
=
DO
AD

h
a
=
ka
3

∴h=
ka2
3

而在Rt△AOD中,由勾股定理得:a2+(ka)2=32
a2=
9
1+k2

∴h=
3k
1+k2

∵k>0,
∴只有当k=1时,即△AOD是等腰三角形时,h有最大值是1.5,
同理求出△BOC边BC上的高的最大值式3.5,
∴梯形ABCD的面积的最大值是:S=
1
2
×(3+7)×(1.5+3.5)=25,
解故答案为:25.