早教吧作业答案频道 -->数学-->
设函数f(x)=e^x-e^(-x)①证明:f(x)的导数f'(x)≥2②若对所有x≥0,且a∈(-∞,2]时,证明不等式f(x)≥ax成立怎么做?
题目详情
设函数f(x)=e^x-e^(-x)
①证明:f(x)的导数f'(x)≥2
②若对所有x≥0,且a∈(-∞,2]时,证明不等式f(x)≥ax成立
怎么做?
①证明:f(x)的导数f'(x)≥2
②若对所有x≥0,且a∈(-∞,2]时,证明不等式f(x)≥ax成立
怎么做?
▼优质解答
答案和解析
1、利用不等式:A>0时,A+1/A≥2即可
f'(x)=e^x+1/(e^x)≥2
2、当x≥0,a≤2时,令F(x)=f(x)-ax,F'(x)=f'(x)-a≥0,所以F(x)在[0,+∞)上单调增加,所以当x≥0时,F(x)=F(0),而F(0)=0,所以x≥0时,F(x)≥0,即f(x)≥ax
f'(x)=e^x+1/(e^x)≥2
2、当x≥0,a≤2时,令F(x)=f(x)-ax,F'(x)=f'(x)-a≥0,所以F(x)在[0,+∞)上单调增加,所以当x≥0时,F(x)=F(0),而F(0)=0,所以x≥0时,F(x)≥0,即f(x)≥ax
看了 设函数f(x)=e^x-e^...的网友还看了以下:
周期函数问题f(x)=-f(x+1)=f((x+1)+1)=f(x+2)“f(x)=-f(x+1) 2020-05-14 …
已知f(x)=log31/4-x,x属于I-5,35/9I(1)求f(x)关于点(2,1)对称的函 2020-05-23 …
我要解题过程已知f(x)=ax方+bx+c,f(0)=0,且f(x+1)=f(x)+x+1,则f( 2020-05-23 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
关于导数的问题.如果f(x)在点x.处可导,则lim(x-->x.)(f^2(x)-f^2(x.) 2020-07-09 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
已知f(x)的求导f`(x)=-2则lim[f(x0-3△x)-f(x0+△x)]/△x为多少我令他 2020-11-01 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …