早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=e^x-e^(-x)①证明:f(x)的导数f'(x)≥2②若对所有x≥0,且a∈(-∞,2]时,证明不等式f(x)≥ax成立怎么做?

题目详情
设函数f(x)=e^x-e^(-x)
①证明:f(x)的导数f'(x)≥2
②若对所有x≥0,且a∈(-∞,2]时,证明不等式f(x)≥ax成立
怎么做?
▼优质解答
答案和解析
1、利用不等式:A>0时,A+1/A≥2即可
f'(x)=e^x+1/(e^x)≥2
2、当x≥0,a≤2时,令F(x)=f(x)-ax,F'(x)=f'(x)-a≥0,所以F(x)在[0,+∞)上单调增加,所以当x≥0时,F(x)=F(0),而F(0)=0,所以x≥0时,F(x)≥0,即f(x)≥ax