早教吧作业答案频道 -->数学-->
抛物线y=x^2-2bx-2何时与轴有有两个交点?一个交点?无交点?
题目详情
抛物线y=x^2-2bx-2何时与轴有有两个交点?一个交点?无交点?
▼优质解答
答案和解析
由给定的抛物线方程y^2=x,可知:抛物线焦点F的坐标为(1/4,0).
∵要求的圆过抛物线的焦点,又与抛物线的准线相切,
∴要求的圆的圆心到抛物线焦点与到抛物线的准线距离相等,∴要求的圆的圆心在抛物线上.
∵要求的圆过点F(1/4,0)、M(1,1),∴要求的圆的圆心G在FM的中垂线上.
由中点坐标公式,容易求出FM的中点坐标为(5/8,1/2).
FM的斜率=(1-0)/(1-1/4)=4/3,∴FM的中垂线的斜率=-3/4.
∴FM的中垂线方程为:y-1/2=-(3/4)(x-5/8),即:y=-(3/4)x+31/32.
显然,方程组y^2=x、y=-(3/4)x+31/32的根就是点G的坐标.
联立:y^2=x、y=-(3/4)x+31/32,消去y,得:[-(3/4)x+31/32]^2=x,
∴(3/4)^2·x^2-2×(3/4)×(31/32)x+(31/32)^2=x,
∴(3/4)^2·x^2-[2×(3/4)×(31/32)+1]x+(31/32)^2=0.
∴方程的判别式
=[2×(3/4)×(31/32)+1]^2-4×(3/4)^2×(31/32)^2
>[2×(3/4)×(31/32)]^2-4×(3/4)^2×(31/32)^2
=0.
∴方程(3/4)^2·x^2-[2×(3/4)×(31/32)+1]x+(31/32)^2=0有两个实数根,
∴点G有两个,∴⊙G有两个.
希望对你能有所帮助.
∵要求的圆过抛物线的焦点,又与抛物线的准线相切,
∴要求的圆的圆心到抛物线焦点与到抛物线的准线距离相等,∴要求的圆的圆心在抛物线上.
∵要求的圆过点F(1/4,0)、M(1,1),∴要求的圆的圆心G在FM的中垂线上.
由中点坐标公式,容易求出FM的中点坐标为(5/8,1/2).
FM的斜率=(1-0)/(1-1/4)=4/3,∴FM的中垂线的斜率=-3/4.
∴FM的中垂线方程为:y-1/2=-(3/4)(x-5/8),即:y=-(3/4)x+31/32.
显然,方程组y^2=x、y=-(3/4)x+31/32的根就是点G的坐标.
联立:y^2=x、y=-(3/4)x+31/32,消去y,得:[-(3/4)x+31/32]^2=x,
∴(3/4)^2·x^2-2×(3/4)×(31/32)x+(31/32)^2=x,
∴(3/4)^2·x^2-[2×(3/4)×(31/32)+1]x+(31/32)^2=0.
∴方程的判别式
=[2×(3/4)×(31/32)+1]^2-4×(3/4)^2×(31/32)^2
>[2×(3/4)×(31/32)]^2-4×(3/4)^2×(31/32)^2
=0.
∴方程(3/4)^2·x^2-[2×(3/4)×(31/32)+1]x+(31/32)^2=0有两个实数根,
∴点G有两个,∴⊙G有两个.
希望对你能有所帮助.
看了 抛物线y=x^2-2bx-2...的网友还看了以下:
已知二次函数的图像于x轴无交点,且对称轴为x=1写一个满足条件的解析式 2020-04-26 …
以下各种情况下应满足的条件1.经过原点2.不经过原点3.在(0,+∞)上是增函数4.在(0,+∞) 2020-04-27 …
已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在 2020-05-15 …
集合划分的个数把一个集合拆成一个或几个无交集的非空子集(即这些子集两两无交集,它们的并是全集),叫 2020-05-16 …
设二次函数f(x)=ax^2+bx+c,若函数y=f(x)的图像与直线y=x,y=-x均无交点,证 2020-05-17 …
已知函数f(x)=x2-4x+a+3,a∈R.(Ⅰ)若函数y=f(x)的图象与x轴无交点,求a的取 2020-06-08 …
已知抛物线y=(k-1)x^2+2kx+k-1(1)k为何值时,抛物线与x轴无交点;(2)若抛物线 2020-06-12 …
二次函数图像位于X轴上方的条件是什么二次函数图像位于X轴上方的条件是什么这个问题的答案如果写成,条 2020-06-21 …
∫1/((x-a)(x-b))dx=(ln|x-a|-ln|x-b|)/(a-b)+C如果((x- 2020-07-29 …
关于幂函数的一个问题y=x^阿尔法如果这个幂函数是偶函数,则阿尔法要有什么要求?如果这个幂函数与x 2020-08-01 …