早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在三角形ABC中,求证:sin(A/2)^2+sin(B/2)^2+(sinC/2)^2=1-2sin(A/2)sin(B/2)sin(C/2)

题目详情
在三角形ABC中,求证:sin(A/2)^2+sin(B/2)^2+(sinC/2)^2=1-2sin(A/2)sin(B/2)sin(C/2)
▼优质解答
答案和解析
sin(A/2)^2+sin(B/2)^2+(sinC/2)^2
=[sin(A/2)]^2+(1-cosB)/2+(1-cosC)/2 半角公式
=1+[sin(A/2)]^2-(cosB+cosC)/2
=1+{cos[(B+C)/2]}^2-cos[(B+C)/2]cos[(B-C)/2] 和差化积
=1+cos[(B+C)/2]{cos[(B+C)/2]-cos[(B-C)/2]} 和差化积
=1+sin(A/2)*(-2)sin(B/2)sin(C/2)
=1-2sin(A/2)sin(B/2)sin(C/2)