早教吧作业答案频道 -->数学-->
如图所示,在△ABC中,求证:(1)若AD为∠BAC的平分线,则S△ABD:S△ACD=AB:AC;(2)设D为BC上的一点,连接AD,若S△ABD:S△ACD=AB:AC,则AD为∠BAC的平分线.
题目详情
如图所示,在△ABC中,求证:
(1)若AD为∠BAC的平分线,则S△ABD:S△ACD=AB:AC;
(2)设D为BC上的一点,连接AD,若S△ABD:S△ACD=AB:AC,则AD为∠BAC的平分线.
(1)若AD为∠BAC的平分线,则S△ABD:S△ACD=AB:AC;
(2)设D为BC上的一点,连接AD,若S△ABD:S△ACD=AB:AC,则AD为∠BAC的平分线.
▼优质解答
答案和解析
(1)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E,
则∠E=∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴∠E=∠CAD,
∴AC=CE,
∵CE∥AB,
∴△ECD∽△ABD,
∴
=
,
∴
=
,
∴S△ABD:S△ACD=(
×BD×AH):(
×CD×AH)=BD:CD=AB:AC;
(2)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E
∵S△ABD:S△ACD=(
×BD×AH):(
×CD×AH)=BD:CD=AB:AC,
又∵CE∥AB,
∴△ECD∽△ABD,
∴
=
,
∴
=
,
∴CE=AC,
∴∠E=∠CAD,
∵CE∥AB,
∴∠E=∠BAD,
∴∠BAD=∠CAD,
∴AD平分∠BAC.
则∠E=∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴∠E=∠CAD,
∴AC=CE,
∵CE∥AB,
∴△ECD∽△ABD,
∴
BD |
CD |
AB |
CE |
∴
BD |
CD |
AB |
AC |
∴S△ABD:S△ACD=(
1 |
2 |
1 |
2 |
(2)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E
∵S△ABD:S△ACD=(
1 |
2 |
1 |
2 |
又∵CE∥AB,
∴△ECD∽△ABD,
∴
BD |
CD |
AB |
CE |
∴
AB |
CE |
AB |
AC |
∴CE=AC,
∴∠E=∠CAD,
∵CE∥AB,
∴∠E=∠BAD,
∴∠BAD=∠CAD,
∴AD平分∠BAC.
看了 如图所示,在△ABC中,求证...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
线性代数的几道题目~1-4为判断题并说明理由,5题是填空题~1.设A,B均为n阶对称方阵,则AB= 2020-05-13 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数...已知直角三 2020-05-17 …
十分之九/a(a为非零数),a为何值时,商大于被除数?a为何值时上等于被除数?a为何值时十分之九/ 2020-06-14 …
在函数y=lgx(x>1)的图像上有M,N,P三点,它们的横坐标分别为a,a+2,a+4,记三角形 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
如图,点A、B、C在数轴上表示的数分别为a、b、c,且OA+OB=OC,则下列结论中:①abc<0 2020-07-21 …