早教吧作业答案频道 -->数学-->
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)=1999/2000
题目详情
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)=1999/2000
▼优质解答
答案和解析
1/[(x+1)(x+2)]+1/[(x+2)(x+3)]+...+1/[(x+99)(x+100)]+1/(x+100)
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+99)-1/(x+100)+1/(x+100)
=1/(x+1)
=1999/2000
x=1/1999
看了 1/[(x+1)(x+2)]...的网友还看了以下: