早教吧作业答案频道 -->数学-->
如图ABBCCD分别与圆O切于EFG且AB平行CD连接OBOC延长co交于点M过点M做MN平行OB交CD于N
题目详情
如图 AB BC CD分别与圆O切于E F G 且AB平行CD 连接OB OC 延长co交于点M 过点M做MN平行OB交CD于N
▼优质解答
答案和解析
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长
证明:(1)∵AB、BC、CD分别与⊙O切于点E、F、G
∴∠OBC= 1/2∠ABC,∠DCB=2∠DCM
∵AB∥CD
∴∠ABC+∠DCB=180°
∴∠OBC+∠OCB= 1/2(∠ABC+∠DCB)= 1/2×180°=90°
∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°=90°
∵MN∥OB
∴∠NMC=∠BOC=90°
∴MN是⊙O的切线
(2)连接OF,则OF⊥BC
由(1)知,△BOC是Rt△
∴ BC=根号下DB的平方+OC的平方=62+82=10
∵S△BOC= 1/2•OB•OC= 1/2•BC•OF
∴6×8=10×OF
∴0F=4.8cm
∴⊙O的半径为4.8cm
由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°
∴△NMC∽△BOC
∴ MN/OB=CM/CO即 MN/6=8+4.8/8
∴MN=9.6(cm)
(1)求证:MN是⊙O的切线;
(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长
证明:(1)∵AB、BC、CD分别与⊙O切于点E、F、G
∴∠OBC= 1/2∠ABC,∠DCB=2∠DCM
∵AB∥CD
∴∠ABC+∠DCB=180°
∴∠OBC+∠OCB= 1/2(∠ABC+∠DCB)= 1/2×180°=90°
∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°=90°
∵MN∥OB
∴∠NMC=∠BOC=90°
∴MN是⊙O的切线
(2)连接OF,则OF⊥BC
由(1)知,△BOC是Rt△
∴ BC=根号下DB的平方+OC的平方=62+82=10
∵S△BOC= 1/2•OB•OC= 1/2•BC•OF
∴6×8=10×OF
∴0F=4.8cm
∴⊙O的半径为4.8cm
由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°
∴△NMC∽△BOC
∴ MN/OB=CM/CO即 MN/6=8+4.8/8
∴MN=9.6(cm)
看了 如图ABBCCD分别与圆O切...的网友还看了以下:
如图所示,正方形ABCD的边长为6cm,点E为AB边上的一点,且AE=2cm,动点M由C点开始以3 2020-05-17 …
已知甲从A到B,乙从B到A,甲、乙二人行走速度之比是6:5.如图所示M是AB的中点,离M点26千米 2020-06-03 …
甲乙两人从AB两地相向而行C点相遇,甲速每分52米,乙速每分70米.如甲速不变提前4分钟出发,乙速 2020-06-04 …
设直线L分别与X轴Y轴交与点AB,如果直线M:Y=KX+T(T大于0)与直线L平行且交X轴于C,求 2020-06-12 …
(2005•济宁)如图,长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2, 2020-07-19 …
已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画 2020-07-22 …
平面直角坐标系知识,会的进来!若A(-3a-1,2b-2)在第一象限,B点在第四象限,且过A‘B的 2020-07-26 …
下列几何语言描述正确的是()A.直线mn与直线ab相交于点DB.点A在直线M上C.点A在直线AB上 2020-07-29 …
如图所示是行星m绕恒星M运动情况示意图,下列说法正确的是().A.速度最大点是A点B.速度最小点是C 2020-11-10 …
m路B+树是一棵m路平衡索引树,除了根节点之外的节点中关键字最多最少分别为?假设函数U(x)为对小数 2020-12-17 …