早教吧作业答案频道 -->数学-->
求解高次方程(4次),急x²+(-2x²+√3x)²+(x-√3/2)²+(-2x+√3x)²=3/4
题目详情
求解高次方程(4次),急
x²+(-2x²+√3x)²+(x-√3/2)²+(-2x+√3x)²=3/4
x²+(-2x²+√3x)²+(x-√3/2)²+(-2x+√3x)²=3/4
▼优质解答
答案和解析
不要叫我写过程了,我也只能给你答案了,没有必要去计算
总共有4个解,我用matlab算的,只是花点时间抄写而已
x1=0
x2=(3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) + 3^(1/2)/3 + ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)
x3= 3^(1/2)/3 - (3^(1/2)/3 - 2/3)/(2*((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)/2 - (3^(1/2)*((3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3))*i)/2
x4= 3^(1/2)/3 - (3^(1/2)/3 - 2/3)/(2*((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)/2 + (3^(1/2)*((3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3))*i)/2
总共有4个解,我用matlab算的,只是花点时间抄写而已
x1=0
x2=(3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) + 3^(1/2)/3 + ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)
x3= 3^(1/2)/3 - (3^(1/2)/3 - 2/3)/(2*((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)/2 - (3^(1/2)*((3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3))*i)/2
x4= 3^(1/2)/3 - (3^(1/2)/3 - 2/3)/(2*((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3)/2 + (3^(1/2)*((3^(1/2)/3 - 2/3)/((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3) - ((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6 + (((17*3^(1/2))/72 + (3^(1/2)*(3^(1/2) - 3))/6)^2 - (3^(1/2)/3 - 2/3)^3)^(1/2))^(1/3))*i)/2
看了 求解高次方程(4次),急x²...的网友还看了以下:
在一个袋子里有相等的红蓝两种颜色球若干,随机抽取5次,在根据前5次的结果求第6次出现红球的概率?前 2020-05-16 …
用一元一次方程解最好1.一架飞机在两个城市之间飞行,无风时飞机飞小时飞行552千米.在一次往返飞行 2020-06-07 …
有关微积分的1.f(x)=根号下1+6x求2次微分2.水波纹的半径以每秒0.35m的速度增长,求半 2020-06-10 …
求解题如下题是以知2006a*a*a=2007b*b*b=2008c*c*c且a分之1+b分之一+ 2020-07-14 …
大学解析几何,求二次曲面yz+3xy+2zx+6=0上经过点A(-1,0,3)的两直母线方程,可追 2020-07-31 …
求三次根号下N的三次方+N的平方+N+1的整数部分(N为正整数)怎么做啊?求三次根号下N的三次方+ 2020-08-02 …
用待定系数法求二次函数,举个例子比如这道题,三元一次方程组怎么得到的,又是怎么解三元一次方程组? 2020-08-03 …
不等式证明问题(1)xyz∈R,求证x4次方+y四次方+z四次方大于等于(x+y+z)xyz(2)1 2020-11-07 …
二元一次方程一次聚会,出席的每位代表都和其他代表握手一次手,统计结果表明,一共握手45次,问参聚会的 2020-11-12 …
linux下对某一列数据,每三个求一次平均值,用什么命令可以实现?比如有下面数值:(123求一次平均 2020-12-28 …