早教吧 育儿知识 作业答案 考试题库 百科 知识分享

矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的体积为245245.

题目详情
24
5
24
5
24
5
242455
24
5
24
5
24
5
242455
▼优质解答
答案和解析
作BO⊥AC于O;
∵是直二面角B-AC-D
∴BO⊥平面ADC;
在△ABC,AB=4,BC=3⇒AC=5;
1
2
BO•AC=
1
2
AB•BC⇒BO=
12
5

∴VB-ACD=
1
3
•BO•S△ADC
=
1
3
×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
1
2
111222BO•AC=
1
2
AB•BC⇒BO=
12
5

∴VB-ACD=
1
3
•BO•S△ADC
=
1
3
×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
1
2
111222AB•BC⇒BO=
12
5

∴VB-ACD=
1
3
•BO•S△ADC
=
1
3
×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
12
5
121212555.
∴VB-ACDB-ACD=
1
3
•BO•S△ADC
=
1
3
×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
1
3
111333•BO•S△ADC△ADC
=
1
3
×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
1
3
111333×
12
5
×
1
2
×3×4
=
24
5

故答案为:
24
5
12
5
121212555×
1
2
×3×4
=
24
5

故答案为:
24
5
1
2
111222×3×4
=
24
5

故答案为:
24
5
24
5
242424555.
故答案为:
24
5
24
5
242424555.