观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为
(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.
(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.
(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.
(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.
(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.
如图,延长BP交AC于M,在△ABM中,BP+PM
(3)四边形BP1P2C的周长<△ABC的周长.理由:
如图,分别延长BP1、CP2交于M,由(2)知,BM+CM
1M+P2M,可得,BP1+P1P2+P2C 2N+NC,三式相加得:BP1+P1P2+P2C 2H+MH+P1M,将以上各式相加,得B1P1+P1P2+P2C+B1C1
(4)四边形BP1P2C的周长<△ABC的周长.理由如下:将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,即可.
(5)比较四边形B1P1P2C1的周长<△ABC的周长.理由如下:
如图,分别作如图所示的延长线交△ABC的边于M、N、K、H,在△BNM中,NB1+B1P1+P1M
由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“ 2020-05-14 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“ 2020-05-14 …
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
关于矩阵的迹(trace)方阵A的迹定义为A的对角线元素的和,想请教:trace(A)能否通过B* 2020-06-12 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①m•n=n•m类比得到a•b=b•a;②(m+ 2020-06-27 …
已知三个正数a.b.c.满足abc=1.求求(a/ab+a+1)+(b/bc+b+1)+(c/ac 2020-07-20 …
求证:A∩(B∪C)=(A∪B)∩(A∪C)(1)假设x∈A∩(B∪C),则x∈A且x∈B∪C,所 2020-07-20 …
a、b、c表示三个数,则乘法结合律可以用()式子表示.A.(a+b)+c=a+(b+c)B.(a× 2020-07-31 …
直角三角形ABC中,BC=2,AC=6,依下列的步骤抄作折纸.(A)将A,C两点重合(B)DE为折痕 2020-11-06 …