早教吧作业答案频道 -->其他-->
(2012•朝阳区二模)如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.(1)求证:△DMN是等边三角形;(2)连接EF,Q是EF中点,CP⊥EF于点P.求证:DP=DQ.
题目详情
(2012•朝阳区二模)如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.
(1)求证:△DMN是等边三角形;
(2)连接EF,Q是EF中点,CP⊥EF于点P.求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
(1)求证:△DMN是等边三角形;
(2)连接EF,Q是EF中点,CP⊥EF于点P.求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
▼优质解答
答案和解析
证明:(1)取AC的中点G,连接NG、DG,
∵D为AB的中点,即DG为△ABC的中位线,
∴DG=
BC,DG∥BC,
∵N为FC的中点,即NG为△AFC的中位线,
∴NG∥AF,又△ACF为等边三角形,
∴∠CNG=∠F=∠CGN=∠CAF=60°,
∴△NGC是等边三角形,
∴NG=NC,
∵M为等边三角形BEC边EC的中点,
∴DG=CM=
EC=
BC,
∵∠DGC+∠GCB=180°,
∴∠NGD+∠GCB=240°,
∵∠GCB+∠NCM=240°,
∴∠NGD=∠NCM,
在△NGD和△NCM中,
,
∴△NGD≌△NCM(SAS),
∴ND=NM,∠GND=∠CNM,
∴∠GNC=∠GND+∠CND=∠MNC+∠CND=60°,
∴∠DNM=60°,
∴△DMN是等边三角形;
(2)连接QN、PM,
∵QN为△FCE的中位线,PM为直角三角形PCE斜边上的中线,
∴QN=
CE=PM,
∵Rt△CPE中,PM=EM,
∴∠MEP=∠MPE,
∵MN∥EF,
∴∠MPE=∠PMN,∠FQN=∠QNM,
∵NQ∥CE,
∴∠FQN=∠MEP,
∴∠PMN=∠QNM,又∠NMD=∠MND=60°,
∴∠PMN+∠NMD=∠QNM+∠MND,即∠QND=∠PMD,
在△QND和△PMD中,
,
∴△QND≌△PMD(SAS),
∴DQ=DP.
∵D为AB的中点,即DG为△ABC的中位线,
∴DG=
1 |
2 |
∵N为FC的中点,即NG为△AFC的中位线,
∴NG∥AF,又△ACF为等边三角形,
∴∠CNG=∠F=∠CGN=∠CAF=60°,
∴△NGC是等边三角形,
∴NG=NC,
∵M为等边三角形BEC边EC的中点,
∴DG=CM=
1 |
2 |
1 |
2 |
∵∠DGC+∠GCB=180°,
∴∠NGD+∠GCB=240°,
∵∠GCB+∠NCM=240°,
∴∠NGD=∠NCM,
在△NGD和△NCM中,
|
∴△NGD≌△NCM(SAS),
∴ND=NM,∠GND=∠CNM,
∴∠GNC=∠GND+∠CND=∠MNC+∠CND=60°,
∴∠DNM=60°,
∴△DMN是等边三角形;
(2)连接QN、PM,
∵QN为△FCE的中位线,PM为直角三角形PCE斜边上的中线,
∴QN=
1 |
2 |
∵Rt△CPE中,PM=EM,
∴∠MEP=∠MPE,
∵MN∥EF,
∴∠MPE=∠PMN,∠FQN=∠QNM,
∵NQ∥CE,
∴∠FQN=∠MEP,
∴∠PMN=∠QNM,又∠NMD=∠MND=60°,
∴∠PMN+∠NMD=∠QNM+∠MND,即∠QND=∠PMD,
在△QND和△PMD中,
|
∴△QND≌△PMD(SAS),
∴DQ=DP.
看了 (2012•朝阳区二模)如图...的网友还看了以下:
求解lim(n,+∞>1/n*(e^1/n+e^2/n+…+e^n/n)求详细解题过程谢谢求解li 2020-05-14 …
matlab函数调用问题,一个矩阵的自变量,怎么都是同一个答案function [ E ] = p 2020-05-16 …
1.若O(20°N,90°E)为太阳直射点,弧线EP、FP分别为晨线和昏线的一段,则 ( ) A. 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
设G=为无环的无向图,|V|=6,|E|=16,则G是()A.完全图B.零图C.D.多重图设A和B 2020-06-12 …
如果对于任意给定的正数总存在一个正整数N,当n>N证:对于任意给定的e>0,要使|yn-2|=|2 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
写单词,这些单词打乱顺序了!:1.d,f,e,n,i,f,e,r,t,()2.g,h,o,e,t, 2020-07-26 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …