早教吧作业答案频道 -->其他-->
(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图1,等角六边形ABCDEF中,三组正对
题目详情
(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.
定义:六个内角相等的六边形叫等角六边形.
(1)研究性质
①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论.
②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论.
③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.
(2)探索判定
三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?
定义:六个内角相等的六边形叫等角六边形.
(1)研究性质
①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论.
②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论.
③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.
(2)探索判定
三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?
▼优质解答
答案和解析
(1)①结论:AB∥DE,BC∥EF,CD∥AF.
证明:连接AD,如图1,
∵六边形ABCDEF是等角六边形,∴∠BAF=∠F=∠E=∠EDC=∠C=∠B=
=120°.
∵∠DAF+∠F+∠E+∠EDA=360°,∴∠DAF+∠EDA=360°-120°-120°=120°.
∵∠DAF+∠DAB=120°,∴∠DAB=∠EDA.∴AB∥DE.
同理BC∥EF,CD∥AF.
②结论:EF=BC,AF=DC.
证明:连接AE、DB,如图2,
∵AB∥DE,AB=DE,∴四边形ABDE是平行四边形.
∴AE=DB,∠EAB=∠BDE.
∵∠BAF=∠EDC.∴∠FAE=∠CDB.
在△AFE和△DCB中,
.
∴△AFE≌△DCB.
∴EF=BC,AF=DC.
③结论:AB=DE,AF=DC,EF=BC.
延长FE、CD相交于点P,延长EF、BA相交于点Q,延长DC、AB相交于点S,如图3.
∵六边形ABCDEF是等角六边形,∴∠BAF=∠AFE=120°.∴∠QAF=∠QFA=60°.
∴△QAF是等边三角形.∴∠Q=60°,QA=QF=AF.
同理:∠S=60°,SB=SC=BC;∠P=60°,PE=PD=ED.
∵∠S=∠P=60°,∴△PSQ是等边三角形.∴PQ=QS=SP.
∴QB=QS-BS=PS-CS=PC.∴AB+AF=AB+QA=QB=PC=PD+DC=ED+DC.
∵AB∥ED,∴△AOB~△DOE.∴
=
=
.
同理:
=
,
=
.
∴
=
=
.
∴
=
=
=
=1.
∴AB=ED,AF=DC,EF=BC.
(2)连接BF,如图4,
∵BC∥EF,∴∠CBF+∠EFB=180°.
∵∠A+∠ABF+∠AFB=180°,∴∠ABC+∠A+∠AFE=360°.
同理:∠A+∠ABC+∠C=360°.
∴∠AFE=∠C.
同理:∠A=∠D,∠ABC=∠E.
Ⅰ.若只有1个内角等于120°,不能保证该六边形一定是等角六边形.
反例:当∠A=120°,∠ABC=150°时,∠D=∠A∠=120°,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=
(720°-120°-120°-150°-150°)=90°.
此时该六边形不是等角六边形.
Ⅱ.若有2个内角等于120°,也不能保证该六边形一定是等角六边形.
反例:当∠A=∠D=120°,∠ABC=150°时,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=
证明:连接AD,如图1,
∵六边形ABCDEF是等角六边形,∴∠BAF=∠F=∠E=∠EDC=∠C=∠B=
(6−2)•180° |
6 |
∵∠DAF+∠F+∠E+∠EDA=360°,∴∠DAF+∠EDA=360°-120°-120°=120°.
∵∠DAF+∠DAB=120°,∴∠DAB=∠EDA.∴AB∥DE.
同理BC∥EF,CD∥AF.
②结论:EF=BC,AF=DC.
证明:连接AE、DB,如图2,
∵AB∥DE,AB=DE,∴四边形ABDE是平行四边形.
∴AE=DB,∠EAB=∠BDE.
∵∠BAF=∠EDC.∴∠FAE=∠CDB.
在△AFE和△DCB中,
|
∴△AFE≌△DCB.
∴EF=BC,AF=DC.
③结论:AB=DE,AF=DC,EF=BC.
延长FE、CD相交于点P,延长EF、BA相交于点Q,延长DC、AB相交于点S,如图3.
∵六边形ABCDEF是等角六边形,∴∠BAF=∠AFE=120°.∴∠QAF=∠QFA=60°.
∴△QAF是等边三角形.∴∠Q=60°,QA=QF=AF.
同理:∠S=60°,SB=SC=BC;∠P=60°,PE=PD=ED.
∵∠S=∠P=60°,∴△PSQ是等边三角形.∴PQ=QS=SP.
∴QB=QS-BS=PS-CS=PC.∴AB+AF=AB+QA=QB=PC=PD+DC=ED+DC.
∵AB∥ED,∴△AOB~△DOE.∴
AB |
ED |
OB |
OE |
OA |
OD |
同理:
BC |
EF |
OB |
OE |
AF |
DC |
OA |
OD |
∴
AB |
ED |
BC |
EF |
AF |
DC |
∴
AB |
ED |
BC |
EF |
AF |
DC |
AB+AF |
ED+DC |
∴AB=ED,AF=DC,EF=BC.
(2)连接BF,如图4,
∵BC∥EF,∴∠CBF+∠EFB=180°.
∵∠A+∠ABF+∠AFB=180°,∴∠ABC+∠A+∠AFE=360°.
同理:∠A+∠ABC+∠C=360°.
∴∠AFE=∠C.
同理:∠A=∠D,∠ABC=∠E.
Ⅰ.若只有1个内角等于120°,不能保证该六边形一定是等角六边形.
反例:当∠A=120°,∠ABC=150°时,∠D=∠A∠=120°,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=
1 |
2 |
此时该六边形不是等角六边形.
Ⅱ.若有2个内角等于120°,也不能保证该六边形一定是等角六边形.
反例:当∠A=∠D=120°,∠ABC=150°时,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=
看了 (2014•台州)研究几何图...的网友还看了以下:
探究2,4-D促进插条生根最适浓度,减小实验误差的方法是,预实验确定浓度范围.请问这句话错在哪里? 2020-05-22 …
曹操说的那句宁教我负天下人休叫天下人负我,原话是什么,是叫还是教?有很多种说法,有一种宁叫我负天下 2020-05-23 …
照样子写词语例子:不可相比叫(无比)1.没有关系叫()2.满不在乎叫()3.所剩不多叫()4.不用 2020-06-13 …
“笔”称种种1.无拘无束地写叫()2.有感而写叫()3.为后段埋伏线索叫()4.引人入胜的文字叫( 2020-06-13 …
照样子,写词语例:不可相比的叫无比,不取报酬的叫无偿1.没有关系的叫()2.没有罪过的叫(),无根 2020-07-13 …
阅读下文,完成探究(4分)晋代的一个名叫车胤的孩子,他家中贫苦,没钱买灯油,又想晚上读书,于是在夏 2020-07-23 …
根据意思填词语例如:不可相比叫无比,不取报酬叫无偿.1.没有理由叫(),没有关系叫().2.没有罪过 2020-11-03 …
1.某工厂流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后依次 2020-12-05 …
一.写词语1.心神不定,好象猴子在乱跳,马儿在急奔一样叫().2.帮助别人脱离痛苦或危险叫().3. 2020-12-17 …
照样子写词语例:不可相比交无比,不取报酬叫无偿1.没有理由叫()没有关系叫()2.没有罪过叫()无根 2021-01-05 …