早教吧作业答案频道 -->数学-->
如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′。(1)求证:△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形
题目详情
如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′。 (1)求证:△A′AD′≌△CC′B; (2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由。 |
|
(1)求证:△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由。
(1)求证:△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由。
(1)求证:△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由。
▼优质解答
答案和解析
(1)∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。 (1)∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。 (1)∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。 (1)∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。
(1)∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到, ∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC, ∴∠D′A′C′=∠BCA, ∴△A′AD′≌△CC′B; (2)当点C′是线段AC的中点时,四边形ABC′D′是菱形, 理由如下: ∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到, ∴C′D′=CD=AB,C′D′∥DC∥AB, ∴四边形ABC′D′是平行四边形, 在Rt△ABC中,点C′是线段AC的中点, ∴ 而∠ACB=30°, ∴ ∴AB=BC′, ∴四边形ABC′D′是菱形。 |
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC,
∴∠D′A′C′=∠BCA,
∴△A′AD′≌△CC′B;
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形,
理由如下:
∵四边形ABCD是矩形,△A′C′D′是由△ACD平移得到,
∴C′D′=CD=AB,C′D′∥DC∥AB,
∴四边形ABC′D′是平行四边形,
在Rt△ABC中,点C′是线段AC的中点,
∴
而∠ACB=30°,
∴
∴AB=BC′,
∴四边形ABC′D′是菱形。
看了 如图,将矩形ABCD沿对角线...的网友还看了以下:
我们知道用5根火柴棒可以拼成2个三角形,那么,再增加一根火柴棒,你能否拼成4个正三角形呢呢?怎么拼 2020-05-17 …
由三视图确定力方块组合的几何体的立方块个数时,我们先观察什么,再看俯视图定什么,在根据主视图与左视 2020-06-07 …
先画图,再解答:①画线段AB,反向延长AB到点C,使AC=12AB,再取BC的中点D.②若线段CD 2020-06-08 …
关于三重积分的先一后二!它先对z定积分,再对xy二重积分,代表了什么样的几何意义啊,就是先一后二指 2020-06-20 …
下列各组词语中,有错别字的一组是()A、老成持重陈陈相因似嗔非嗔转嗔为喜B、和盘托出随声附和承前启 2020-06-29 …
MATLAB对一组离散的数据进行离散傅立叶变换,得到频谱图,再进行低通滤波,然后再反变换得到离散数 2020-07-13 …
就是把图形位似的定理和性质告诉我,比如:位似图形对应线段的比等于什么?位似图形对应角怎样?位似图形 2020-08-01 …
如图,直线l⊥m,垂足为O,请画出△ABC关于直线l对称的△A′B′C′;再画出△ABC关于点O成 2020-08-02 …
如图,在5×4正方形网格中,有A,B,C三个格点.试在图中再找出一个格点D,满足:D与A,B,C三 2020-08-03 …
(2012•安庆一模)如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A、B两个格点,请在 2020-11-01 …