早教吧作业答案频道 -->其他-->
如图,以△ABC的三边为边长在BC的同侧作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是什么四边形?试说明理由.(2)当△ABC满足条件时,四边形ADEF是矩形;当△ABC满足条
题目详情
如图,以△ABC的三边为边长在BC的同侧作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是什么四边形?试说明理由.
(2)当△ABC满足条件______时,四边形ADEF是矩形;当△ABC满足条件______时,四边形ADEF是菱形;当△ABC满足条件______时,四边形ADEF是正方形;当△ABC满足条件______时,四边形ADEF不存在.选择其中一个试说明理由.
(2)当△ABC满足条件______时,四边形ADEF是矩形;当△ABC满足条件______时,四边形ADEF是菱形;当△ABC满足条件______时,四边形ADEF是正方形;当△ABC满足条件______时,四边形ADEF不存在.选择其中一个试说明理由.
▼优质解答
答案和解析
(1)是平行四边形,
理由是:∵△BCE、△ACF、△ABD都是等边三角形,
∴AB=AD,AC=CF,BC=CE,∠BCE=∠ACF,
∴∠BCE-∠ACE=∠ACF-∠ACE,
即∠BCA=∠FCE,
在△BCA和△ECF中
,
∴△BCA≌△ECF,
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理DE=AF,
∴四边形ADEF是平行四边形.
(2)当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵∠DAF=360°-∠DAB-∠BAC-∠FAC=360°-60°-60°-150°=90°,
四边形ADEF是平行四边形,
∴平行四边形ADEF是矩形;
当AB=AC时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,
∴平行四边形ADEF是菱形;
当AB=AC,∠BAC=150°时,四边形ADEF是正方形,
理由是:∵四边形ADEF是平行四边形,
已证:AD=AF,∠DAF=90°,
∴平行四边形ADEF是正方形,
当∠BAC是60°时,四边形ADEF不存在,
理由是:此时D、A、F三点共线,
故答案为:∠BAC=150°,AB=AC,AB=AC,∠BAC=150°,∠BAC=60°.
BC=CE BC=CE BC=CE∠BCA=∠ECF ∠BCA=∠ECF ∠BCA=∠ECFAC=CF AC=CF AC=CF ,
∴△BCA≌△ECF,
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理DE=AF,
∴四边形ADEF是平行四边形.
(2)当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵∠DAF=360°-∠DAB-∠BAC-∠FAC=360°-60°-60°-150°=90°,
四边形ADEF是平行四边形,
∴平行四边形ADEF是矩形;
当AB=AC时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,
∴平行四边形ADEF是菱形;
当AB=AC,∠BAC=150°时,四边形ADEF是正方形,
理由是:∵四边形ADEF是平行四边形,
已证:AD=AF,∠DAF=90°,
∴平行四边形ADEF是正方形,
当∠BAC是60°时,四边形ADEF不存在,
理由是:此时D、A、F三点共线,
故答案为:∠BAC=150°,AB=AC,AB=AC,∠BAC=150°,∠BAC=60°.
理由是:∵△BCE、△ACF、△ABD都是等边三角形,
∴AB=AD,AC=CF,BC=CE,∠BCE=∠ACF,
∴∠BCE-∠ACE=∠ACF-∠ACE,
即∠BCA=∠FCE,
在△BCA和△ECF中
|
∴△BCA≌△ECF,
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理DE=AF,
∴四边形ADEF是平行四边形.
(2)当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵∠DAF=360°-∠DAB-∠BAC-∠FAC=360°-60°-60°-150°=90°,
四边形ADEF是平行四边形,
∴平行四边形ADEF是矩形;
当AB=AC时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,
∴平行四边形ADEF是菱形;
当AB=AC,∠BAC=150°时,四边形ADEF是正方形,
理由是:∵四边形ADEF是平行四边形,
已证:AD=AF,∠DAF=90°,
∴平行四边形ADEF是正方形,
当∠BAC是60°时,四边形ADEF不存在,
理由是:此时D、A、F三点共线,
故答案为:∠BAC=150°,AB=AC,AB=AC,∠BAC=150°,∠BAC=60°.
|
BC=CE |
∠BCA=∠ECF |
AC=CF |
BC=CE |
∠BCA=∠ECF |
AC=CF |
BC=CE |
∠BCA=∠ECF |
AC=CF |
∴△BCA≌△ECF,
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理DE=AF,
∴四边形ADEF是平行四边形.
(2)当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵∠DAF=360°-∠DAB-∠BAC-∠FAC=360°-60°-60°-150°=90°,
四边形ADEF是平行四边形,
∴平行四边形ADEF是矩形;
当AB=AC时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,
∴平行四边形ADEF是菱形;
当AB=AC,∠BAC=150°时,四边形ADEF是正方形,
理由是:∵四边形ADEF是平行四边形,
已证:AD=AF,∠DAF=90°,
∴平行四边形ADEF是正方形,
当∠BAC是60°时,四边形ADEF不存在,
理由是:此时D、A、F三点共线,
故答案为:∠BAC=150°,AB=AC,AB=AC,∠BAC=150°,∠BAC=60°.
看了 如图,以△ABC的三边为边长...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
国王对A、B、C、D四位级别不同的大臣进行内部官位调整,大臣们曾对这次调整作过如下预测:A说:“B 2020-06-11 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
A、B、C、D四个人在争论今天是星期几.A说:今天是星期四.B说:昨天是星期日.C说:你们俩说的都 2020-07-21 …
一次唱歌比赛,A.B.C.D.E,五位同学位于前五名,事后有人问他们的名次,他们是这样回答的A说B第 2020-10-31 …
a四方+b四方+c四方+d四方=4abcd,abcd为正数,用abcd围成的图形是什么图形不是正方形 2020-11-07 …
甲乙丙丁四位同学,在蓝球比赛中犯规的次数各不相同.ABCD四位裁判有一段对:话A说,甲犯2次,乙犯3 2020-11-30 …
abcde五人进行游泳比赛询问他们比赛情况他们回答:a说d第二我第三b说我第一c第二c说b最后我第三 2020-12-06 …