早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图在三角形ABC中AD垂直BC于点D点EF分别是ABAC中点当三角形ABC满足什么条件时四边形AEDF是矩形

题目详情
▼优质解答
答案和解析
【分析】
若四边形AEDF是矩形
①∠BAC=90°,即△ABC是直角三角形
②AD=EF(矩形对角线相等)
∵E,F分别是AB,AC的中点
∴EF是△ABC的中位线
∴EF=½BC,则AD=½BC
∵直角三角形斜边中线等于斜边的一半
∴AD即是△ABC的中线也是高
∴△ABC是等腰三角形
综上所述,△ABC是等腰直角三角形
【证明】
∵△ABC是等腰直角三角形
∴∠BAC=90°,AB=AC
∵AD⊥BC
∴BD=CD(等腰三角形三线合一)
AD=BD,AD=CD(直角三角形斜边中线等于斜边的一半)
∵E是AB的中点
∴DE⊥AB(三线合一)
∵F是AC的中点
∴DF⊥AC(三线合一)
∴四边形AEDF是矩形(有3个角是直角的四边形是矩形)