早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形ABCD中,M、N、分别是AD、BC的中点,P、Q分别是BM、DN的中点.mpnq是什么四边形

题目详情
▼优质解答
答案和解析
应该是菱形.

因为M、N是AD、BC的中点,所以AM=AD/2=BC/2=BN,
又AB=CD,角A=角C=90度,所以三角形ABM全等于三解形CDN,
所以BM=DN,且角AMB=角CND;

由角AMB=角CND 及 角AMB=角MBC 得角CND=角MBC(内错角),所以BM平行于DN(同位角)
另外,由BM=DN,P和Q是BM、DN的中点,所以PM=NQ,
于是,PM与NQ平行且相等,所以MPNQ是平行四边形.

边MN,因为M、N都是中点,所以ABNM也是矩形,
连AN交AM于O点,有BO=OM,说明O点与P点重合,
于是PN=PM,所以MPNQ是菱形