早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知实数a≠0,函数f(x)=a(x-2)2+2lnx,g(x)=f(x)-4a+14a.(1)当a=1时,讨论函数f(x)的单调性;(2)若f(x)在区间[1,4]上是增函数,求实数a的取值范围;(3)若当x∈[2,+∞)时,

题目详情
已知实数a≠0,函数f(x)=a(x-2)2+2lnx,g(x)=f(x)-4a+
1
4a

(1)当a=1时,讨论函数f(x)的单调性;
(2)若f(x)在区间[1,4]上是增函数,求实数a的取值范围;
(3)若当x∈[2,+∞)时,函数g(x)图象上的点均在不等式
x≥2
y≥x
,所表示的平面区域内,求实数a的取值范围.
▼优质解答
答案和解析
(1)当a=1时,f(x)=x2-4x+4+2lnx(x>0),
∴f′(x)=2x-4+
2
x
=
2(x−1)2
x

∵x>0,∴f′(x)≥0,
∴f(x)在(0,+∞)上是增函数;
(2)∵f(x)=ax2-4ax+4a+2lnx,
∴f′(x)=2ax-4a+
2
x
=
2ax2−4ax+2
x

又∵f(x)在[1,4]上是增函数,
∴在[1,4]上f′(x)≥0恒成立,即2ax2-4ax+2≥0在[1,4]上恒成立①;
令g(x)=2ax2-4ax+2,则g(x)=2a(x-1)2-2a+2,
当a>0时,要使①成立,只需g(1)≥0,即-2a+2≥0,解得a≤1,∴0<a≤1;
当a<0时,要使①成立,只需g(4)≥0,即16a+2≥0,解得a≥-
1
8
,∴-
1
8
≤a<0;
综上,-
1
8
≤a<0或0<a≤1.
(3)由题意,使a(x-2)2+2lnx-4a+
1
4a
≥x在[2,+∞)上恒成立,
令h(x)=a(x-2)2+2lnx-4a+
1
4a
-x,则h(x)min≥0在[2,+∞)上恒成立②;
∴h′(x)=2ax-4a+
2
x
-1,即h′(x)=
(x−2)(2ax−1)
x

(i)当a<0时,∵x>2,∴h′(x)≤0,
∴h(x)在[2,+∞)上是减函数,且h(4)=2ln4-4+
1
4a
<0,
∴②不成立;
(ii)当0<a<
1
4
时,2<
1
2a
,此时h(x)在[2,
1
2a
]上是减函数,在[
1
2a
,+∞)上是增函数,
∴h(x)min=h(
1
2a
)=a(
1
2a
−2)2+2ln
1
2a
-4a+
1
4a
-
1
2a
=-2-ln2a,
∴只需-2-2ln2a≥0,解得a≤
1
2e
;∴0<a≤
1
2e
时②成立;
(iii)当a≥
1
4
时,2≥
1
2a
,此时h(x)在[2,+∞)上是增函数,
∴h(x)min=h(2)=2ln2-4a+
1
4a
-2,
∵-4a+
1
4a
≤0,2ln2-2<0,∴h(x)min=h(2)<0,∴②不成立;
综上,0<a≤
1
2e