早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数f(x)=ax-1/(x+2)在区间(-无穷,-2)上单调递增,则实数a的取值范围是,

题目详情
函数f(x)=ax-1/(x+2)在区间(-无穷,-2)上单调递增,则实数a的取值范围是___,
▼优质解答
答案和解析
设x1<x2<-2,
因为f(x)=ax-1/(x+2)在区间(-无穷,-2)上单调递增
所以f(x2)-f(x1)>0即ax2-1/(x2+2)-[ax1-1/(x1+2)]>0
[(ax2-1)(x1+2)-(ax1-1)(x2+2)]/[(x2+2)(x1+2)]>0
[(x2-x1)(1+2a)]/[(x2+2)(x1+2)]>0
因为x1<x2<-2,即x2-x1>0
所以(x2+2)<0,(x1+2)<0则(x2+2)(x1+2)>0
要使[(x2-x1)(1+2a)]/[(x2+2)(x1+2)]>0成立,则1+2a>0
所以a>-1/2