早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可表示为:c2+4·(ab),即(a+b)2=c2+4·(ab)由此推出勾股定理a2+b2=c2

题目详情
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b) 2 ,也可表示为:c 2 +4·( ab),即(a+b) 2 =c 2 +4·( ab)由此推出勾股定理a 2 +b 2 =c 2 ,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”。

(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y) 2 =x 2 +2xy+y 2
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x 2 +px+qx+pq=x 2 +(p+q)x+pq。
▼优质解答
答案和解析

(1)大正方形的面积为:c 2 ,中间空白部分正方形面积为:
四个阴影部分直角三角形面积和为: ,由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有 = =
(2)如图示:大正方形边长为(x+y),所以面积为: ,它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即
所以有 成立;
(3)如图示:大矩形的长、宽分别为(x+p),(x+q),则其面积为:(x+p)·(x+q),从图形关系上可得大矩形为一个边长为x的正方形和三个小矩形构成的则其面积又可表示为: ,则有: