早教吧作业答案频道 -->其他-->
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
题目详情
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
▼优质解答
答案和解析
设正方形ABCD的边长是a,正方形CEFG的边长是b,正方形EDHI的边长是c.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
,
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
,
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
ab+(a-b)2.
则c2=a2+b2.
∴CD2+CE2=DE2.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
|
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
|
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
1 |
2 |
则c2=a2+b2.
∴CD2+CE2=DE2.
看了 如图,已知正方形ABCD和C...的网友还看了以下:
商务英语中的商务邮件写作当中的结束:"look forward to & looking forw 2020-05-15 …
I like wearing a red coat 可不可以用I like being in a 2020-05-16 …
根号下(-1)再乘根号下(-1)等于多少?如果把(-1)*(-1)挪到根号下,会得出1.如果把它看 2020-06-13 …
i乘以-i等于多少啊?-1到底是两个i的乘积还是正i和负i的乘积啊? 2020-06-30 …
矩阵问题已知A矩阵,AX+I=A^2+X(其中I为单位矩阵),求X(求思路,谢谢)因为AX+I=A 2020-07-14 …
P=A(1+i)^-1+A(1+i)^-2+A(i+i)^-3+……A(1+i)^-n(1)将两边 2020-07-25 …
(1+i)*(1-i)用平方差我会做用除法公式(a+bi)*(c+di)=(ac-bd)+(ad+ 2020-07-30 …
用电器的输出功率p通过的电流i,用电器的电阻r之间的关系是p=i方r,谁是定值谁与谁成反比或正比 2020-10-30 …
设A^2=A,则(I+A)^-1=证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所 2020-11-01 …
有关终值,年值和现值的问题每年年底取得净收益400,共取得15年,求他第一年年初得净现值我用了两种方 2020-11-24 …