早教吧作业答案频道 -->其他-->
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
题目详情
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
▼优质解答
答案和解析
设正方形ABCD的边长是a,正方形CEFG的边长是b,正方形EDHI的边长是c.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
,
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
,
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
ab+(a-b)2.
则c2=a2+b2.
∴CD2+CE2=DE2.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
|
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
|
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
1 |
2 |
则c2=a2+b2.
∴CD2+CE2=DE2.
看了 如图,已知正方形ABCD和C...的网友还看了以下:
某纯净物若干克,在纯氧中充分燃烧,消耗9.6克氧气,生成8.8克CO2,5.4克H2O,该物质组成 2020-05-16 …
AAA测试样题数学第五题设q 是三次多项式 f (x) = x3 - 3x + 10 的一个根,且 2020-05-17 …
一道高中函数题,有一定难度设t是三次多项式f(x)=x^3-3x+10的一个根,且a=(t^2+t 2020-05-20 …
一道关于勾股定理的小题直角三角形的两条直角边分别为a、b,斜边为c,斜边上的高为h,则以c+h,a 2020-06-10 …
勾股定理的应用已知直角三角形ABC两条直角边分别为a和b,斜边为c,斜边上的高为h,是判断以h,c 2020-06-10 …
f(x),g(x),h(x)在[a,b]上连续,(a,b)上可导,求证存在一个e属于(a,b)使得 2020-07-16 …
下列推论正确的是()A.S(g)+O2(g)=SO2(g)△H=a;S(s)+O2(g)=SO2( 2020-07-30 …
在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式子中[]A. 2020-07-31 …
三角形面积公式S=2分之1ah中(a表示三角形一边,h表示这一边上的高),若a固定不变,h是自变量 2020-08-01 …
已知A-H为初中阶段常见的物质,且A、C、G均为常用化肥且C为复合肥,其反应关系如图所示,以下判断一 2020-10-30 …