早教吧作业答案频道 -->其他-->
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
题目详情
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
▼优质解答
答案和解析
设正方形ABCD的边长是a,正方形CEFG的边长是b,正方形EDHI的边长是c.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
,
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
,
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
ab+(a-b)2.
则c2=a2+b2.
∴CD2+CE2=DE2.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
|
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
|
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
1 |
2 |
则c2=a2+b2.
∴CD2+CE2=DE2.
看了 如图,已知正方形ABCD和C...的网友还看了以下:
正方体ABCD-A’B"C"D"中P,Q,R分别是AB,AD,BC的中点,那么正方体的过P,Q,R 2020-05-13 …
有压隧洞洞身断面常用的形式有。()A.A.圆形B.B.圆拱直墙形C.C.马蹄形D.D.卵形 2020-05-27 …
在四边形ABCD中,AB=a,BC=b,CD=c,DA=d,且a·b=b·c=c·d=d·a,四边 2020-06-03 …
已知三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F求证三角形ABE全已知 2020-08-01 …
三角形ABC为等边三角形D为AC上一点BD的垂直平分线交AB于点E交BC于点F1.当D在AC上移动 2020-08-03 …
初三数学问题以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆.若这个四边形四条边的中 2020-11-20 …
(1)如图,△ABC是等边三角形,D是BC上一点,点E在BA的延长线上,且BD=AE,证明:CE=D 2020-12-09 …
在回旋加速器中()A.高频电源产生的电场用来加速带电粒子B.D形盒内有匀强磁场,两D形盒之间的窄缝有 2020-12-22 …
面积是2500的矩形、三角形、菱形各有几个?边长是整数,面积是2500的矩形、三角形、菱形各有几个? 2020-12-25 …
1.对角线相等的四边形是矩形.2.三角形不是多边形.3.对角线互相垂直且有一组邻边相等的四边形是菱形 2021-02-01 …