早教吧作业答案频道 -->其他-->
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
题目详情
如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.
▼优质解答
答案和解析
设正方形ABCD的边长是a,正方形CEFG的边长是b,正方形EDHI的边长是c.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
,
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
,
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
ab+(a-b)2.
则c2=a2+b2.
∴CD2+CE2=DE2.
过H作HM⊥CD于点M,过点I作IN⊥HM于点N.
则四边形AHMD是矩形,则△ADH≌△MHD,
在直角△ADH和直角△CDE中,
|
∴△ADH≌△CDE(HL).
∵∠AHM=∠DHI=90°,
∴∠AHD=∠NHI,
在△ADH和△NIH中,
|
∴△ADH≌△NIH(AAS).
则△ADH≌△MHD≌△CDE≌△NIH.
则CE=DG=HN=b,四边形MNKC是正方形,CM=a-b.
则S正方形EDHI=4S△CDE+S正方形MNKC,
即c2=4×
1 |
2 |
则c2=a2+b2.
∴CD2+CE2=DE2.
看了 如图,已知正方形ABCD和C...的网友还看了以下:
如图,已知正方体ABCD-A'B'C'D',求证:DB'⊥平面ACD' 有用方向向量和法向量证的方 2020-05-16 …
要验证某有机物属于烃4.验证某有机物属于烃,应完成的实验内容属是 ( )A.只测定它的C、H比 B 2020-05-16 …
已知a+b+c=1,求证:√2≤√(a^2+b^2)+√(b^2+c^2)+√(c^2+a^2)≤ 2020-05-20 …
微积分中导数的定义运用问题1.设f(0)=0,则f(x)在x=0处可导的充分必要条件是:(A)h趋 2020-06-04 …
组成糖原和脂质的主要化学元素分别是()A.C、H、O和C、H、OB.C、H、O和C、H、O、NC. 2020-06-27 …
如图所示,在Rt△ABC中,∠ACB=90度,CD⊥AB于D,设AC=b,BC=a,AB=c,CD 2020-07-09 …
△ABC中,∠ACB=90º,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,求证(1) 2020-07-18 …
f(x)=ax-lnx,g(x)=b/x+clnx(a,b,c为非零常数)1,若y=1是曲线f(x) 2020-11-06 …
用三种方法来提升同一个重物:a.用不计摩擦和轮重的定滑轮将重物提高h;b.沿光滑斜面将重物提高h;c 2020-11-24 …
常温下,0.1mol/l某一元酸HA溶液中C(H+)=0.001mol/l,下列叙述正确的是0.1m 2020-12-22 …