早教吧作业答案频道 -->数学-->
S(n)=[(X1-U`)^2+(X2-U`)^2+...+(Xn-U`)^2]/n是否是方差的无偏估计量
题目详情
S(n)= [(X1-U`)^2+(X2-U`)^2+...+(Xn-U`)^2]/n是否是方差的无偏估计量
▼优质解答
答案和解析
不是,样本方差s的平方准确的值是分母下面是n-1,自由度为n-1.
对总体X进行n次抽样,得到X1,X2,……,Xn
平均值X`=(X1+X2+...+Xn)/n
X方差的无偏估计量为:
S(n-1) = [(X1-X`)^2+(X2-X`)^2+...+(Xn-X`)^2]/(n-1)
证明如下:
E[Xi^2] = [EX]^2 + DX
E[X`] = EX D[X`] = DX/n
E[X`^2] = [EX]^2 + DX/n
E[Xi·X`] = E[Xi^2]/n + (n-1)[EX]^2/n
E[S(n-1)] = [ 1/(n-1) ] · { nE[Xi^2] - 2nE[X`·Xi] + nE[X`^2] }
= [ 1/(n-1) ] · n · [ (n-1)DX/n ]
= DX
对总体X进行n次抽样,得到X1,X2,……,Xn
平均值X`=(X1+X2+...+Xn)/n
X方差的无偏估计量为:
S(n-1) = [(X1-X`)^2+(X2-X`)^2+...+(Xn-X`)^2]/(n-1)
证明如下:
E[Xi^2] = [EX]^2 + DX
E[X`] = EX D[X`] = DX/n
E[X`^2] = [EX]^2 + DX/n
E[Xi·X`] = E[Xi^2]/n + (n-1)[EX]^2/n
E[S(n-1)] = [ 1/(n-1) ] · { nE[Xi^2] - 2nE[X`·Xi] + nE[X`^2] }
= [ 1/(n-1) ] · n · [ (n-1)DX/n ]
= DX
看了 S(n)=[(X1-U`)^...的网友还看了以下:
1.设全集U=〔x|x=n/2,n属于整数〕,A=〔x|x=n,n属于整数〕,则U中A的补集2.设 2020-06-02 …
S(n)=[(X1-U`)^2+(X2-U`)^2+...+(Xn-U`)^2]/n是否是方差的无 2020-06-10 …
在概率论中,为什么(n-1)S^2/ó^2是自由度为n-1的卡方分布?∑(xi-u)^2/σ^2∽ 2020-06-16 …
设y=x^u,求y^n=?这是书上的解法是y'=ux^(u-1),y''=u(u-1)x^(u-2 2020-06-18 …
随机变量X-N(u,σ2)则X在区间(u-σ,u+σ),(u-2σ,u+2σ),(u-3σ,u+3 2020-07-18 …
请高手用MATLAB帮忙解下微分方程组教下:Dy(1)=y(2);Dy(2)=y(3)^2*u*A 2020-07-21 …
(1)已知随即变量X=U+2V和Y=U-2V不相关,下列哪个正确()(A)N(0,1),N(0,1 2020-08-01 …
特征值和特征向量的性质证明?1:如何证明特征值的和等于方阵主对角线的和2:如何证明特征值的积等于方 2020-08-02 …
设X1,X2,…,Xn是来自总体N(μ,σ2)的简单随机样本,σ2已知,.X是样本均值,S2是样本 2020-08-02 …
高等代数的矩阵D证明题第一行ab00~00,第二行cab0~00,第三行0cab~00,最后一行00 2020-11-06 …