早教吧作业答案频道 -->数学-->
请详细解答一下高中微积分中基本初等函数公式的推导
题目详情
请详细解答一下高中微积分中基本初等函数公式的推导
▼优质解答
答案和解析
这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):基本导数公式
1.y=c(c为常数) y'=0 2幂函数.y=x^n,y'=nx^(n-1) (n∈Q*) 熟记1/X的导数 3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x 唯一一个导函数为本身的函数 4.(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx ,y'=1/x 5.y=(sinx y)'=cosx 6.y=(cosx y)'=-sinx 7.y=(tanx y)'=1/(cosx)^2 8.y=(cotx y)'=-1/(sinx)^2 9.y=(arcsinx y)'=1/√1-x^2 10.y=(arccosx y)'=-1/√1-x^2 11.y=(arctanx y)'=1/(1+x^2) 12.y=(arccotx y)'=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=(u'v-uv')/v^2 3.原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0.2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q.主要应用导数定义与N次方差公式.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明.3.y=a^x,Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算.由设的辅助函数可以知道:Δx=loga(1+β).所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna.可以知道,当a=e时有y=e^x y'=e^x.4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x.也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x.这时可以进行y=x^n y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1).5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx.7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果.对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法.y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在.x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.建议先去搞懂什么是极限.极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸.并且要认识到导数是一个比值.
1.y=c(c为常数) y'=0 2幂函数.y=x^n,y'=nx^(n-1) (n∈Q*) 熟记1/X的导数 3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x 唯一一个导函数为本身的函数 4.(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx ,y'=1/x 5.y=(sinx y)'=cosx 6.y=(cosx y)'=-sinx 7.y=(tanx y)'=1/(cosx)^2 8.y=(cotx y)'=-1/(sinx)^2 9.y=(arcsinx y)'=1/√1-x^2 10.y=(arccosx y)'=-1/√1-x^2 11.y=(arctanx y)'=1/(1+x^2) 12.y=(arccotx y)'=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=(u'v-uv')/v^2 3.原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0.2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q.主要应用导数定义与N次方差公式.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明.3.y=a^x,Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算.由设的辅助函数可以知道:Δx=loga(1+β).所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna.可以知道,当a=e时有y=e^x y'=e^x.4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x.也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x.这时可以进行y=x^n y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1).5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx.7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果.对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法.y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在.x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.建议先去搞懂什么是极限.极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸.并且要认识到导数是一个比值.
看了 请详细解答一下高中微积分中基...的网友还看了以下:
淋巴细胞百分比淋巴细胞计数高什么原因患者信息:女 10岁 江苏 南京 病情描述(发病时间、主要症状 2020-05-15 …
公倍数和公约数的填空题(要求详细解题过程)M、N是两个自然数,它们的最小公倍数是96,最大公约数是 2020-06-05 …
高等数学在实际生活中的应用的论文要求包括高等数学公式字数3000求一篇高等数学在实际生活中的应用的 2020-06-10 …
基坑用水准仪读数怎么计算如题,知道后视标高为424.1,后视读数为0.3,前视读数为247,原始标 2020-06-16 …
望高人解签!今天为朋友在归元寺数罗汉求了一支签:酷烈福起于玩忽,盛满功败于细微,天公使而负大任,君 2020-06-25 …
有没有一本书能将整个初中高中(理科)数学公式定理讲义全面包含,而且够详细,麻烦推荐一下中学数学课本 2020-08-02 …
量筒做得细而高,主要目的是()A.细高的量筒美观B.细高的量筒与粗矮的量筒相比,相应的刻度间隔较大, 2020-12-20 …
量筒做得细而高,主要目的是()A.细高的量筒美观B.细高的量筒与粗矮的量筒相比,相应的刻度间隔较大, 2020-12-20 …
量筒做得细而高,主要目的是()A.细高的量筒美观B.细高的量筒与粗矮的量筒相比,相应的刻度间隔较大, 2020-12-20 …
量筒做得细而高,主要目的是[]A.细高的量筒美观B.细高的量筒与粗矮的量筒相比,相应的刻度间隔较大, 2020-12-20 …