早教吧作业答案频道 -->数学-->
8年级下第4章数学试卷
题目详情
8年级下 第4章数学试卷
▼优质解答
答案和解析
第四章 二次根式
教材内容
本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
(3)掌握 · = (a≥0,b≥0), = · ;
= (a≥0,b>0), = (a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
4.1 二次根式 3课时
4.2 二次根式的乘法 3课时
4.3 二次根式的加减 3课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如 (a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“ (a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a0)、 、 、- 、 、 (x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
第一课时作业设计
一、选择题
1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
教材内容
本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
(3)掌握 · = (a≥0,b≥0), = · ;
= (a≥0,b>0), = (a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
4.1 二次根式 3课时
4.2 二次根式的乘法 3课时
4.3 二次根式的加减 3课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如 (a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“ (a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a0)、 、 、- 、 、 (x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
第一课时作业设计
一、选择题
1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
看了 8年级下第4章数学试卷...的网友还看了以下:
人教版初中数学有哪些章样式为:代数部分第一章:代数式第二章有理数...几何部分:第一章线段、角.. 2020-05-21 …
神龙海淀测试卷七年级数学(上)第五章测试题B卷答案甲,乙,丙三人,甲每小时走3.5千米,乙每小时走 2020-07-12 …
成功训练计划数学八年级下册答案!!!!第一章本章测试卷的!!!! 2020-07-23 …
《启东黄冈大试卷》七年级上册数学第二章测试B卷的答案 2020-11-12 …
神龙海淀测试卷(RJ)九年级数学(上)第二十一章测试题A卷答案 2020-11-24 …
七年级上数学测试题(附加答案)注意是第三章:有理数的运算的啊! 2021-01-22 …
七年级下数学试卷里的题题.试卷名叫:第五阶段测试卷(A)(第十四章14.1-14.2)如图,在△AB 2021-01-22 …
七年级下数学各章的测试题要人教版的,5至10章的都要,最好带答案,谢谢 2021-01-22 …
北师大版数学七年级上册第五章测试题和答案需要试卷做题正确答案改题! 2021-01-22 …
人教版七年级上册数学第一章有理数加减及其前几节综合测试题 2021-01-22 …
相关搜索:8年级下第4章数学试卷